|
from copy import deepcopy |
|
from pathlib import Path |
|
from typing import Any, Dict, List |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.data as torchdata |
|
import torchvision.transforms as tvf |
|
from PIL import Image |
|
from pathlib import Path |
|
|
|
from ...models.utils import deg2rad, rotmat2d |
|
from ...utils.io import read_image |
|
from ...utils.wrappers import Camera |
|
from ..image import pad_image, rectify_image, resize_image |
|
from ..utils import decompose_rotmat |
|
from ..schema import MIADataConfiguration |
|
|
|
|
|
class MapLocDataset(torchdata.Dataset): |
|
def __init__( |
|
self, |
|
stage: str, |
|
cfg: MIADataConfiguration, |
|
names: List[str], |
|
data: Dict[str, Any], |
|
image_dirs: Dict[str, Path], |
|
seg_mask_dirs: Dict[str, Path], |
|
flood_masks_dirs: Dict[str, Path], |
|
image_ext: str = "", |
|
): |
|
self.stage = stage |
|
self.cfg = deepcopy(cfg) |
|
self.data = data |
|
self.image_dirs = image_dirs |
|
self.seg_mask_dirs = seg_mask_dirs |
|
self.flood_masks_dirs = flood_masks_dirs |
|
self.names = names |
|
self.image_ext = image_ext |
|
|
|
tfs = [] |
|
self.tfs = tvf.Compose(tfs) |
|
self.augmentations = self.get_augmentations() |
|
|
|
def __len__(self): |
|
return len(self.names) |
|
|
|
def __getitem__(self, idx): |
|
if self.stage == "train" and self.cfg.random: |
|
seed = None |
|
else: |
|
seed = [self.cfg.seed, idx] |
|
(seed,) = np.random.SeedSequence(seed).generate_state(1) |
|
|
|
scene, seq, name = self.names[idx] |
|
|
|
view = self.get_view( |
|
idx, scene, seq, name, seed |
|
) |
|
|
|
return view |
|
|
|
def get_augmentations(self): |
|
if self.stage != "train" or not self.cfg.augmentations.enabled: |
|
print(f"No Augmentation!", "\n" * 10) |
|
self.cfg.augmentations.random_flip = 0.0 |
|
return tvf.Compose([]) |
|
|
|
print(f"Augmentation!", "\n" * 10) |
|
augmentations = [ |
|
tvf.ColorJitter( |
|
brightness=self.cfg.augmentations.brightness, |
|
contrast=self.cfg.augmentations.contrast, |
|
saturation=self.cfg.augmentations.saturation, |
|
hue=self.cfg.augmentations.hue, |
|
) |
|
] |
|
|
|
if self.cfg.augmentations.random_resized_crop: |
|
augmentations.append( |
|
tvf.RandomResizedCrop(scale=(0.8, 1.0)) |
|
) |
|
|
|
if self.cfg.augmentations.gaussian_noise.enabled: |
|
augmentations.append( |
|
tvf.GaussianNoise( |
|
mean=self.cfg.augmentations.gaussian_noise.mean, |
|
std=self.cfg.augmentations.gaussian_noise.std, |
|
) |
|
) |
|
|
|
if self.cfg.augmentations.brightness_contrast.enabled: |
|
augmentations.append( |
|
tvf.ColorJitter( |
|
brightness=self.cfg.augmentations.brightness_contrast.brightness_factor, |
|
contrast=self.cfg.augmentations.brightness_contrast.contrast_factor, |
|
saturation=0, |
|
hue=0, |
|
) |
|
) |
|
|
|
return tvf.Compose(augmentations) |
|
|
|
def random_flip(self, image, cam, valid, seg_mask, flood_mask, conf_mask): |
|
if torch.rand(1) < self.cfg.augmentations.random_flip: |
|
image = torch.flip(image, [-1]) |
|
cam = cam.flip() |
|
valid = torch.flip(valid, [-1]) |
|
seg_mask = torch.flip(seg_mask, [1]) |
|
flood_mask = torch.flip(flood_mask, [-1]) |
|
conf_mask = torch.flip(conf_mask, [-1]) |
|
|
|
return image, cam, valid, seg_mask, flood_mask, conf_mask |
|
|
|
def get_view(self, idx, scene, seq, name, seed): |
|
data = { |
|
"index": idx, |
|
"name": name, |
|
"scene": scene, |
|
"sequence": seq, |
|
} |
|
cam_dict = self.data["cameras"][scene][seq][self.data["camera_id"][idx]] |
|
cam = Camera.from_dict(cam_dict).float() |
|
|
|
if "roll_pitch_yaw" in self.data: |
|
roll, pitch, yaw = self.data["roll_pitch_yaw"][idx].numpy() |
|
else: |
|
roll, pitch, yaw = decompose_rotmat( |
|
self.data["R_c2w"][idx].numpy()) |
|
|
|
image = read_image(self.image_dirs[scene] / (name + self.image_ext)) |
|
image = Image.fromarray(image) |
|
image = self.augmentations(image) |
|
image = np.array(image) |
|
|
|
if "plane_params" in self.data: |
|
|
|
plane_w = self.data["plane_params"][idx] |
|
data["ground_plane"] = torch.cat( |
|
[rotmat2d(deg2rad(torch.tensor(yaw))) |
|
@ plane_w[:2], plane_w[2:]] |
|
) |
|
|
|
image, valid, cam, roll, pitch = self.process_image( |
|
image, cam, roll, pitch, seed |
|
) |
|
|
|
if "chunk_index" in self.data: |
|
data["chunk_id"] = (scene, seq, self.data["chunk_index"][idx]) |
|
|
|
|
|
seg_mask_path = self.seg_mask_dirs[scene] / \ |
|
(name.split("_")[0] + ".npy") |
|
seg_masks_ours = np.load(seg_mask_path) |
|
mask_center = ( |
|
seg_masks_ours.shape[0] // 2, seg_masks_ours.shape[1] // 2) |
|
|
|
seg_masks_ours = seg_masks_ours[mask_center[0] - |
|
100:mask_center[0], mask_center[1] - 50: mask_center[1] + 50] |
|
|
|
if self.cfg.num_classes == 6: |
|
seg_masks_ours = seg_masks_ours[..., [0, 1, 2, 4, 6, 7]] |
|
|
|
flood_mask_path = self.flood_masks_dirs[scene] / \ |
|
(name.split("_")[0] + ".npy") |
|
flood_mask = np.load(flood_mask_path) |
|
|
|
flood_mask = flood_mask[mask_center[0]-100:mask_center[0], |
|
mask_center[1] - 50: mask_center[1] + 50] |
|
|
|
confidence_map = flood_mask.copy() |
|
confidence_map = (confidence_map - confidence_map.min()) / \ |
|
(confidence_map.max() - confidence_map.min() + 1e-6) |
|
|
|
seg_masks_ours = torch.from_numpy(seg_masks_ours).float() |
|
flood_mask = torch.from_numpy(flood_mask).float() |
|
confidence_map = torch.from_numpy(confidence_map).float() |
|
|
|
|
|
with torch.random.fork_rng(devices=[]): |
|
torch.manual_seed(seed) |
|
image, cam, valid, seg_masks_ours, flood_mask, confidence_map = self.random_flip( |
|
image, cam, valid, seg_masks_ours, flood_mask, confidence_map) |
|
|
|
return { |
|
**data, |
|
"image": image, |
|
"valid": valid, |
|
"camera": cam, |
|
"seg_masks": seg_masks_ours, |
|
"flood_masks": flood_mask, |
|
"roll_pitch_yaw": torch.tensor((roll, pitch, yaw)).float(), |
|
"confidence_map": confidence_map |
|
|
|
} |
|
|
|
def process_image(self, image, cam, roll, pitch, seed): |
|
image = ( |
|
torch.from_numpy(np.ascontiguousarray(image)) |
|
.permute(2, 0, 1) |
|
.float() |
|
.div_(255) |
|
) |
|
|
|
if not self.cfg.gravity_align: |
|
|
|
roll = 0.0 |
|
pitch = 0.0 |
|
image, valid = rectify_image(image, cam, roll, pitch) |
|
else: |
|
image, valid = rectify_image( |
|
image, cam, roll, pitch if self.cfg.rectify_pitch else None |
|
) |
|
roll = 0.0 |
|
if self.cfg.rectify_pitch: |
|
pitch = 0.0 |
|
|
|
if self.cfg.target_focal_length is not None: |
|
|
|
factor = self.cfg.target_focal_length / cam.f.numpy() |
|
size = (np.array(image.shape[-2:][::-1]) * factor).astype(int) |
|
image, _, cam, valid = resize_image( |
|
image, size, camera=cam, valid=valid) |
|
size_out = self.cfg.resize_image |
|
if size_out is None: |
|
|
|
stride = self.cfg.pad_to_multiple |
|
size_out = (np.ceil((size / stride)) * stride).astype(int) |
|
|
|
image, valid, cam = pad_image( |
|
image, size_out, cam, valid, crop_and_center=True |
|
) |
|
elif self.cfg.resize_image is not None: |
|
image, _, cam, valid = resize_image( |
|
image, self.cfg.resize_image, fn=max, camera=cam, valid=valid |
|
) |
|
if self.cfg.pad_to_square: |
|
|
|
image, valid, cam = pad_image( |
|
image, self.cfg.resize_image, cam, valid) |
|
|
|
if self.cfg.reduce_fov is not None: |
|
h, w = image.shape[-2:] |
|
f = float(cam.f[0]) |
|
fov = np.arctan(w / f / 2) |
|
w_new = round(2 * f * np.tan(self.cfg.reduce_fov * fov)) |
|
image, valid, cam = pad_image( |
|
image, (w_new, h), cam, valid, crop_and_center=True |
|
) |
|
|
|
with torch.random.fork_rng(devices=[]): |
|
torch.manual_seed(seed) |
|
image = self.tfs(image) |
|
|
|
return image, valid, cam, roll, pitch |
|
|