Manu
commited on
Commit
•
10e69ed
1
Parent(s):
6f3b453
app without requirements added
Browse files- app.py +98 -3
- image_utils.py +37 -0
- requirements.txt +0 -0
- segmentation_utils.py +371 -0
app.py
CHANGED
@@ -1,7 +1,102 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from image_utils import print_text_on_image_centered, create_background_image
|
4 |
+
from hf_utils import hf_validate_api_token
|
5 |
+
from segmentation_utils import segment_and_overlay_results
|
6 |
|
7 |
+
def segment_gradio_image(api_token, model, image):
|
8 |
+
|
9 |
+
# Validacion del token y la imagen
|
10 |
+
|
11 |
+
is_token_valid, api_token_message = hf_validate_api_token(api_token)
|
12 |
+
if not is_token_valid:
|
13 |
+
text_image = print_text_on_image_centered(
|
14 |
+
create_background_image(500, 500, "white"),
|
15 |
+
'HuggingFace API Token invalid. Please enter a valid token.',
|
16 |
+
'red'
|
17 |
+
)
|
18 |
+
segments_list = "No segments available."
|
19 |
+
else:
|
20 |
+
if image is None:
|
21 |
+
text_image = print_text_on_image_centered(
|
22 |
+
create_background_image(500, 500, "white"),
|
23 |
+
'No image detected',
|
24 |
+
'orange'
|
25 |
+
)
|
26 |
+
segments_list = "No segments available."
|
27 |
+
else:
|
28 |
+
text_image = print_text_on_image_centered(
|
29 |
+
create_background_image(500, 500, "white"),
|
30 |
+
'PROCESANDO',
|
31 |
+
'blue'
|
32 |
+
)
|
33 |
+
segments_list = "No segments available."
|
34 |
+
# Assuming segment_image is a placeholder for actual segmentation function
|
35 |
+
# Uncomment and modify this part according to your segmentation implementation
|
36 |
+
# response = segment_image(api_token, model, image)
|
37 |
+
# text_image = response["segmented_image"]
|
38 |
+
|
39 |
+
text_image, segments = segment_and_overlay_results(image,model,api_token)
|
40 |
+
print("app.py segment_gradio_image")
|
41 |
+
segments_list = "Segments:\n"
|
42 |
+
for segment in segments:
|
43 |
+
print(segment['label'] + " " + str(segment['score']))
|
44 |
+
segments_list += f"\n{segment['label']}: {segment['score']}"
|
45 |
+
|
46 |
+
|
47 |
+
return api_token_message, text_image, segments_list
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
with gr.Blocks() as demo:
|
52 |
+
gr.Markdown("# Segment Image")
|
53 |
+
gr.Markdown("Upload an image and let the model segment it.")
|
54 |
+
|
55 |
+
with gr.Row():
|
56 |
+
api_token = gr.Textbox(
|
57 |
+
label="API Token",
|
58 |
+
placeholder="Enter your Hugging Face API token here"
|
59 |
+
)
|
60 |
+
model_name = gr.Textbox(
|
61 |
+
label="AI Segmentation Model",
|
62 |
+
placeholder="Enter your Segmentation model here",
|
63 |
+
value="facebook/mask2former-swin-tiny-coco-panoptic"
|
64 |
+
)
|
65 |
+
|
66 |
+
image_input = gr.Image(label="Upload Image")
|
67 |
+
|
68 |
+
with gr.Row():
|
69 |
+
api_token_validation = gr.Textbox(label="API Token Validation")
|
70 |
+
segmented_image = gr.Image(label="Segmented Image")
|
71 |
+
|
72 |
+
# New block for segments output
|
73 |
+
|
74 |
+
with gr.Row():
|
75 |
+
segments_output = gr.Textbox(label="Segments")
|
76 |
+
|
77 |
+
examples = gr.Examples(
|
78 |
+
examples=[
|
79 |
+
["Your HF API Token", "facebook/mask2former-swin-tiny-coco-panoptic", "https://upload.wikimedia.org/wikipedia/commons/7/74/A-Cat.jpg"]
|
80 |
+
],
|
81 |
+
inputs=[api_token, model_name, image_input]
|
82 |
+
)
|
83 |
+
|
84 |
+
api_token.change(
|
85 |
+
fn=segment_gradio_image,
|
86 |
+
inputs=[api_token, model_name, image_input],
|
87 |
+
outputs=[api_token_validation, segmented_image, segments_output]
|
88 |
+
)
|
89 |
+
|
90 |
+
model_name.change(
|
91 |
+
fn=segment_gradio_image,
|
92 |
+
inputs=[api_token, model_name, image_input],
|
93 |
+
outputs=[api_token_validation, segmented_image, segments_output]
|
94 |
+
)
|
95 |
+
|
96 |
+
image_input.change(
|
97 |
+
fn=segment_gradio_image,
|
98 |
+
inputs=[api_token, model_name, image_input],
|
99 |
+
outputs=[api_token_validation, segmented_image, segments_output]
|
100 |
+
)
|
101 |
|
|
|
102 |
demo.launch()
|
image_utils.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw, ImageFont
|
2 |
+
|
3 |
+
|
4 |
+
def print_text_on_image_centered(image, text, color="black"):
|
5 |
+
# Crea un objeto Draw para la imagen
|
6 |
+
draw = ImageDraw.Draw(image)
|
7 |
+
|
8 |
+
|
9 |
+
# Define el tamaño inicial de la fuente
|
10 |
+
font_size = 30
|
11 |
+
font = ImageFont.load_default().font_variant(size=font_size)
|
12 |
+
|
13 |
+
# Calcula las dimensiones del texto
|
14 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
15 |
+
text_width = text_bbox[2] - text_bbox[0]
|
16 |
+
text_height = text_bbox[3] - text_bbox[1]
|
17 |
+
|
18 |
+
# Reduce el tamaño de la fuente hasta que el texto se ajuste dentro de la imagen
|
19 |
+
while text_width > image.width:
|
20 |
+
font_size -= 1
|
21 |
+
font = ImageFont.load_default().font_variant(size=font_size)
|
22 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
23 |
+
text_width = text_bbox[2] - text_bbox[0]
|
24 |
+
|
25 |
+
# Calcula la posición del texto
|
26 |
+
text_x = (image.width - text_width) / 2
|
27 |
+
text_y = (image.height - text_height) / 2
|
28 |
+
|
29 |
+
# Dibuja el texto en la imagen
|
30 |
+
draw.text((text_x, text_y), text, font=font, fill=color)
|
31 |
+
return image
|
32 |
+
|
33 |
+
# Crea una imagen en blanco por defecto
|
34 |
+
|
35 |
+
def create_background_image(width, height, color="white"):
|
36 |
+
return Image.new("RGB", (width, height), color)
|
37 |
+
|
requirements.txt
ADDED
File without changes
|
segmentation_utils.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from pycocotools import mask
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from PIL import Image, ImageDraw, ImageOps, ImageFont
|
5 |
+
from dotenv import find_dotenv, load_dotenv
|
6 |
+
import os
|
7 |
+
import base64
|
8 |
+
import io
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
from image_utils import print_text_on_image_centered, create_background_image
|
13 |
+
from icecream import ic
|
14 |
+
import traceback
|
15 |
+
from pprint import pprint
|
16 |
+
|
17 |
+
|
18 |
+
load_dotenv(find_dotenv())
|
19 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
20 |
+
|
21 |
+
API_URL = "https://api-inference.huggingface.co/models/facebook/mask2former-swin-tiny-coco-panoptic"
|
22 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
23 |
+
|
24 |
+
# Función para transformar la entrada en un array de numpy
|
25 |
+
# Si la entrada es una URL, descarga la imagen y la convierte en un array de numpy
|
26 |
+
# Si la entrada es una ruta de archivo, carga la imagen y la convierte en un array de numpy
|
27 |
+
# Si la entrada ya es un array de numpy, devuélvela tal cual
|
28 |
+
# Si la entrada no es ninguna de las anteriores, lanza un ValueError
|
29 |
+
|
30 |
+
def transform_image_to_numpy_array(input):
|
31 |
+
if isinstance(input, np.ndarray):
|
32 |
+
# Si la entrada es un array de numpy, devuélvela tal cual
|
33 |
+
h, w = input.shape[:2]
|
34 |
+
new_height = int(h * (500 / w))
|
35 |
+
return cv2.resize(input, (500, new_height))
|
36 |
+
elif isinstance(input, str):
|
37 |
+
# Si la entrada es una cadena, podría ser una URL o una ruta de archivo
|
38 |
+
if input.startswith('http://') or input.startswith('https://'):
|
39 |
+
# Si la entrada es una URL, descarga la imagen y conviértela en un array de numpy
|
40 |
+
# se necesita un header para evitar el error 403
|
41 |
+
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36"}
|
42 |
+
response = requests.get(input, headers=headers)
|
43 |
+
ic(response.status_code)
|
44 |
+
image_array = np.frombuffer(response.content, dtype=np.uint8)
|
45 |
+
image = cv2.imdecode(image_array, -1)
|
46 |
+
|
47 |
+
# Si la imagen tiene 3 canales (es decir, es una imagen en color),
|
48 |
+
# convertirla de BGR a RGB
|
49 |
+
if image.ndim == 3:
|
50 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
51 |
+
image = Image.fromarray(image).convert("RGBA")
|
52 |
+
image = np.array(image)
|
53 |
+
else:
|
54 |
+
# Si la entrada es una ruta de archivo, carga la imagen y conviértela en un array de numpy
|
55 |
+
image = cv2.imread(input)
|
56 |
+
|
57 |
+
h, w = image.shape[:2]
|
58 |
+
new_height = int(h * (500 / w))
|
59 |
+
return cv2.resize(image, (500, new_height))
|
60 |
+
else:
|
61 |
+
raise ValueError("La entrada no es un array de numpy, una URL ni una ruta de archivo.")
|
62 |
+
|
63 |
+
def transform_image_to_numpy_array2(input):
|
64 |
+
if isinstance(input, np.ndarray):
|
65 |
+
# Si la entrada es un array de numpy, devuélvela tal cual
|
66 |
+
return cv2.resize(input, (500, 500))
|
67 |
+
elif isinstance(input, str):
|
68 |
+
# Si la entrada es una cadena, podría ser una URL o una ruta de archivo
|
69 |
+
if input.startswith('http://') or input.startswith('https://'):
|
70 |
+
# Si la entrada es una URL, descarga la imagen y conviértela en un array de numpy
|
71 |
+
# se necesita un header para evitar el error 403
|
72 |
+
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36"}
|
73 |
+
response = requests.get(input, headers=headers)
|
74 |
+
ic(response.status_code)
|
75 |
+
image_array = np.frombuffer(response.content, dtype=np.uint8)
|
76 |
+
image = cv2.imdecode(image_array, -1)
|
77 |
+
|
78 |
+
# Si la imagen tiene 3 canales (es decir, es una imagen en color),
|
79 |
+
# convertirla de BGR a RGB
|
80 |
+
if image.ndim == 3:
|
81 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
82 |
+
image = Image.fromarray(image).convert("RGBA")
|
83 |
+
image = np.array(image)
|
84 |
+
else:
|
85 |
+
# Si la entrada es una ruta de archivo, carga la imagen y conviértela en un array de numpy
|
86 |
+
image = cv2.imread(input)
|
87 |
+
|
88 |
+
return cv2.resize(image, (500, 500))
|
89 |
+
else:
|
90 |
+
raise ValueError("La entrada no es un array de numpy, una URL ni una ruta de archivo.")
|
91 |
+
|
92 |
+
def segment_image_from_numpy(image_array):
|
93 |
+
# Convert the image to bytes
|
94 |
+
is_success, im_buf_arr = cv2.imencode(".jpg", image_array)
|
95 |
+
data = im_buf_arr.tobytes()
|
96 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
97 |
+
pprint(response.json())
|
98 |
+
return response.json()
|
99 |
+
|
100 |
+
|
101 |
+
def segment_image_from_path(image_path):
|
102 |
+
with open(image_path, "rb") as f:
|
103 |
+
data = f.read()
|
104 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
105 |
+
return response.json()
|
106 |
+
|
107 |
+
def segment_image_from_image(image):
|
108 |
+
# Convert the image to bytes
|
109 |
+
is_success, im_buf_arr = cv2.imencode(".jpg", image)
|
110 |
+
data = im_buf_arr.tobytes()
|
111 |
+
|
112 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
113 |
+
return response.json()
|
114 |
+
|
115 |
+
def decode_mask(mask_str, size):
|
116 |
+
mask_data = base64.b64decode(mask_str)
|
117 |
+
mask_image = Image.open(io.BytesIO(mask_data))
|
118 |
+
mask_image = mask_image.resize(size).convert("L")
|
119 |
+
return mask_image
|
120 |
+
|
121 |
+
|
122 |
+
def overlay_masks_on_image(image, segments, transparency=0.4):
|
123 |
+
if isinstance(image, np.ndarray):
|
124 |
+
image = Image.fromarray(image)
|
125 |
+
|
126 |
+
original_image = image
|
127 |
+
if original_image.mode != 'RGBA':
|
128 |
+
original_image = original_image.convert('RGBA')
|
129 |
+
|
130 |
+
overlay = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
131 |
+
text_layer = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
132 |
+
|
133 |
+
for segment in segments:
|
134 |
+
mask_str = segment['mask']
|
135 |
+
mask_image = decode_mask(mask_str, original_image.size)
|
136 |
+
color = generate_random_color()
|
137 |
+
|
138 |
+
color_mask = ImageOps.colorize(mask_image, black="black", white=color)
|
139 |
+
color_mask.putalpha(mask_image)
|
140 |
+
|
141 |
+
overlay = Image.alpha_composite(overlay, color_mask)
|
142 |
+
|
143 |
+
# Calcula el centroide de la mascara
|
144 |
+
x, y = np.where(np.array(mask_image) > 0)
|
145 |
+
centroid_x = x.mean()
|
146 |
+
centroid_y = y.mean()
|
147 |
+
|
148 |
+
# Imprime la etiqueta y la puntuación en la capa de texto
|
149 |
+
font_size = 30
|
150 |
+
draw = ImageDraw.Draw(text_layer)
|
151 |
+
font = ImageFont.load_default().font_variant(size=font_size)
|
152 |
+
label = segment['label']
|
153 |
+
score = segment['score']
|
154 |
+
text =f"{label}: {score}"
|
155 |
+
|
156 |
+
# Calcula el tamaño del texto
|
157 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
158 |
+
text_width = text_bbox[2] - text_bbox[0]
|
159 |
+
text_height = text_bbox[3] - text_bbox[1]
|
160 |
+
|
161 |
+
# Asegúrate de que las coordenadas del texto están dentro de los límites de la imagen
|
162 |
+
text_x = max(0, min(centroid_x - text_width / 2, original_image.size[0] - text_width))
|
163 |
+
text_y = max(0, min(centroid_y - text_height / 2, original_image.size[1] - text_height))
|
164 |
+
|
165 |
+
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
166 |
+
|
167 |
+
# Ajusta la transparencia de la capa de superposición
|
168 |
+
overlay = Image.blend(original_image, overlay, transparency)
|
169 |
+
|
170 |
+
# Combina la capa de superposición con la capa de texto
|
171 |
+
final_image = Image.alpha_composite(overlay, text_layer)
|
172 |
+
|
173 |
+
return final_image
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
def overlay_masks_on_image2(image, segments, transparency=0.4):
|
183 |
+
# Convert numpy array to PIL Image
|
184 |
+
#original_image = Image.fromarray(image).convert("RGBA")
|
185 |
+
#original_image = image
|
186 |
+
#original_image = Image.open(image).convert("RGBA")
|
187 |
+
# para file es str
|
188 |
+
# para url es numpy.ndarray
|
189 |
+
# para cv.imread es numpy.ndarray
|
190 |
+
|
191 |
+
# Convertir el array de numpy a una imagen PIL si es necesario
|
192 |
+
if isinstance(image, np.ndarray):
|
193 |
+
image = Image.fromarray(image)
|
194 |
+
|
195 |
+
print(type(image))
|
196 |
+
print(image)
|
197 |
+
original_image = image
|
198 |
+
|
199 |
+
if original_image.mode != 'RGBA':
|
200 |
+
original_image = original_image.convert('RGBA')
|
201 |
+
|
202 |
+
print(original_image.size)
|
203 |
+
overlay = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
204 |
+
print(overlay.size)
|
205 |
+
# Nueva capa para el texto
|
206 |
+
|
207 |
+
text_layer = Image.new("RGBA", original_image.size, (255, 255, 255, 0))
|
208 |
+
|
209 |
+
for segment in segments:
|
210 |
+
|
211 |
+
|
212 |
+
print(segment['label'] + " " + str(segment['score']))
|
213 |
+
mask_str = segment['mask']
|
214 |
+
mask_image = decode_mask(mask_str, original_image.size)
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
# Convierte la imagen de la máscara a un array de numpy
|
219 |
+
mask_array = np.array(mask_image)
|
220 |
+
|
221 |
+
# Encuentra los píxeles blancos
|
222 |
+
y, x = np.where(mask_array > 0)
|
223 |
+
|
224 |
+
# Calcula el cuadro delimitador de los píxeles blancos
|
225 |
+
x_min, y_min, width, height = cv2.boundingRect(np.array(list(zip(x, y))))
|
226 |
+
|
227 |
+
|
228 |
+
# Crea un objeto ImageDraw para dibujar en la imagen original
|
229 |
+
draw = ImageDraw.Draw(original_image)
|
230 |
+
|
231 |
+
|
232 |
+
# Dibuja el cuadro delimitador en la imagen original
|
233 |
+
draw.rectangle([(x_min, y_min), (x_min + width, y_min + height)], outline=(0, 255, 0), width=2)
|
234 |
+
|
235 |
+
|
236 |
+
color = generate_random_color()
|
237 |
+
|
238 |
+
color_mask = ImageOps.colorize(mask_image, black="black", white=color)
|
239 |
+
color_mask.putalpha(mask_image)
|
240 |
+
|
241 |
+
overlay = Image.alpha_composite(overlay, color_mask)
|
242 |
+
|
243 |
+
|
244 |
+
# Calcula el centroide de la mascara
|
245 |
+
|
246 |
+
x, y = np.where(np.array(mask_image) > 0)
|
247 |
+
centroid_x = x.mean()
|
248 |
+
centroid_y = y.mean()
|
249 |
+
|
250 |
+
# Imprime la etiqueta y la puntuación en la capa de texto
|
251 |
+
|
252 |
+
font_size = 30
|
253 |
+
draw = ImageDraw.Draw(text_layer)
|
254 |
+
font_path = "/System/Library/Fonts/Arial.ttf" # Path to Arial font on macOS
|
255 |
+
font = ImageFont.truetype(font_path, font_size)
|
256 |
+
label = segment['label']
|
257 |
+
score = segment['score']
|
258 |
+
text =f"{label}: {score}"
|
259 |
+
|
260 |
+
# Estima el tamaño del texto hard rockandroll way
|
261 |
+
|
262 |
+
text_width = 500
|
263 |
+
text_height = 100
|
264 |
+
|
265 |
+
|
266 |
+
# Asegúrate de que las coordenadas del texto están dentro de los límites de la imagen
|
267 |
+
text_x = max(0, min(centroid_x - text_width / 2, original_image.size[0] - text_width))
|
268 |
+
text_y = max(0, min(centroid_y - text_height / 2, original_image.size[1] - text_height))
|
269 |
+
# Asegúrate de que las coordenadas del texto están dentro de los límites de la imagen
|
270 |
+
text_x = max(0, min(centroid_x, original_image.size[0] - text_width))
|
271 |
+
text_y = max(0, min(centroid_y, original_image.size[1] - text_height))
|
272 |
+
|
273 |
+
|
274 |
+
# Calcula las coordenadas del texto
|
275 |
+
text_x = centroid_x - text_width / 2
|
276 |
+
text_y = centroid_y - text_height / 2
|
277 |
+
|
278 |
+
|
279 |
+
# Asegúrate de que las coordenadas del texto están dentro de los límites de la imagen
|
280 |
+
text_x = max(0, min(text_x, original_image.size[0] - text_width))
|
281 |
+
text_y = max(0, min(text_y, original_image.size[1] - text_height))
|
282 |
+
|
283 |
+
|
284 |
+
draw.text((centroid_x - text_width / 2, centroid_y - text_height / 2), text, fill=(255, 255, 255, 255), font=font)
|
285 |
+
|
286 |
+
#draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
287 |
+
|
288 |
+
# Ajusta la transparencia de la capa de superposición
|
289 |
+
print(original_image.size)
|
290 |
+
print(overlay.size)
|
291 |
+
overlay = Image.blend(original_image, overlay, transparency)
|
292 |
+
|
293 |
+
# Combina la capa de superposición con la capa de texto
|
294 |
+
|
295 |
+
final_image = Image.alpha_composite(overlay, text_layer)
|
296 |
+
|
297 |
+
#final_image = print_text_on_image_centered(final_image, 'SEGMENTING OK', 'green')
|
298 |
+
|
299 |
+
return final_image
|
300 |
+
|
301 |
+
def generate_random_color():
|
302 |
+
return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
303 |
+
|
304 |
+
|
305 |
+
def segment_and_overlay_results(image_path, api_token, model):
|
306 |
+
#segments = segment_image_from_image(image)
|
307 |
+
#final_image = overlay_masks_on_image(image, segments)
|
308 |
+
#return final_image
|
309 |
+
processed_image = None # Initialize processed_image
|
310 |
+
segments = []
|
311 |
+
#image_type = None
|
312 |
+
#if isinstance(image_path, str):
|
313 |
+
# image_type = 'FILE'
|
314 |
+
# image = cv2.imread('cats.jpg')
|
315 |
+
#elif isinstance(image_path, np.ndarray):
|
316 |
+
# image_type = 'NUMPY ARRAY'
|
317 |
+
#else:
|
318 |
+
# raise ValueError("The image is neither a Image nor a local file.")
|
319 |
+
|
320 |
+
#ic(image_type)
|
321 |
+
image = transform_image_to_numpy_array(image_path)
|
322 |
+
# imprime tres primeros pixeles
|
323 |
+
print(type(image))
|
324 |
+
ic(image[0, 0:3])
|
325 |
+
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
try:
|
330 |
+
#segments = segment_image_from_image(image)
|
331 |
+
#processed_image = overlay_masks_on_image(image, segments)
|
332 |
+
|
333 |
+
# debug image contents
|
334 |
+
|
335 |
+
#if os.path.isfile(image):
|
336 |
+
# ic ("--- image is a file ---")
|
337 |
+
# image = Image.open(image)
|
338 |
+
# if image is None:
|
339 |
+
# ic("image is None")
|
340 |
+
# return None, []
|
341 |
+
|
342 |
+
ic("--- calling segment_image_from_path ---")
|
343 |
+
segments = segment_image_from_numpy(image)
|
344 |
+
#if image_type == 'FILE':
|
345 |
+
# segments = segment_image_from_path(image_path)
|
346 |
+
#if image_type == 'NUMPY ARRAY':
|
347 |
+
# segments = segment_image_from_image(image_path)
|
348 |
+
|
349 |
+
ic("--- printing segments ---")
|
350 |
+
for segment in segments:
|
351 |
+
ic(segment['label'] ,segment['score'])
|
352 |
+
processed_image = print_text_on_image_centered(
|
353 |
+
create_background_image(500, 500, "white"),
|
354 |
+
'SEGMENTING OK',
|
355 |
+
'green'
|
356 |
+
)
|
357 |
+
ic("--- calling overlay_masks_on_image ---")
|
358 |
+
processed_image = overlay_masks_on_image(image, segments)
|
359 |
+
except Exception as e:
|
360 |
+
print("EXCEPTION")
|
361 |
+
ic(e)
|
362 |
+
print(traceback.format_exc())
|
363 |
+
processed_image = print_text_on_image_centered(
|
364 |
+
create_background_image(500, 500, "white"),
|
365 |
+
e,
|
366 |
+
'green'
|
367 |
+
)
|
368 |
+
segments = []
|
369 |
+
return processed_image, segments
|
370 |
+
finally:
|
371 |
+
return processed_image, segments
|