Hecheng0625 commited on
Commit
bf22427
Β·
verified Β·
1 Parent(s): 4949b9c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -183
README.md CHANGED
@@ -1,183 +1,10 @@
1
- ## MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer
2
-
3
- [![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750)
4
- [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co/amphion/maskgct)
5
- [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co/spaces/amphion/maskgct)
6
- [![readme](https://img.shields.io/badge/README-Key%20Features-blue)](./models/tts/maskgct/README.md)
7
-
8
- ## Overview
9
-
10
- MaskGCT (**Mask**ed **G**enerative **C**odec **T**ransformer) is *a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision, as well as phone-level duration prediction*. MaskGCT is a two-stage model: in the first stage, the model uses text to predict semantic tokens extracted from a speech self-supervised learning (SSL) model, and in the second stage, the model predicts acoustic tokens conditioned on these semantic tokens. MaskGCT follows the *mask-and-predict* learning paradigm. During training, MaskGCT learns to predict masked semantic or acoustic tokens based on given conditions and prompts. During inference, the model generates tokens of a specified length in a parallel manner. Experiments with 100K hours of in-the-wild speech demonstrate that MaskGCT outperforms the current state-of-the-art zero-shot TTS systems in terms of quality, similarity, and intelligibility. Audio samples are available at [demo page](https://maskgct.github.io/).
11
-
12
- <br>
13
- <div align="center">
14
- <img src="./imgs/maskgct/maskgct.png" width="100%">
15
- </div>
16
- <br>
17
-
18
- ## News
19
-
20
- - **2024/10/19**: We release **MaskGCT**, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision. MaskGCT is trained on Emilia dataset and achieves SOTA zero-shot TTS perfermance.
21
-
22
- ## Quickstart
23
-
24
- **Clone and install**
25
-
26
- ```bash
27
- git clone https://github.com/open-mmlab/Amphion.git
28
- # create env
29
- bash ./models/tts/maskgct/env.sh
30
- ```
31
-
32
- **Model download**
33
-
34
- We provide the following pretrained checkpoints:
35
-
36
-
37
- | Model Name | Description |
38
- |-------------------|-------------|
39
- | [Acoustic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. |
40
- | [Semantic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. |
41
- | [MaskGCT-T2S](https://huggingface.co/amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. |
42
- | [MaskGCT-S2A](https://huggingface.co/amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. |
43
-
44
- You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co/amphion/MaskGCT/tree/main) or use huggingface api.
45
-
46
- ```python
47
- from huggingface_hub import hf_hub_download
48
-
49
- # download semantic codec ckpt
50
- semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors")
51
-
52
- # download acoustic codec ckpt
53
- codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors")
54
- codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors")
55
-
56
- # download t2s model ckpt
57
- t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors")
58
-
59
- # download s2a model ckpt
60
- s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors")
61
- s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors")
62
- ```
63
-
64
- **Basic Usage**
65
-
66
- You can use the following code to generate speech from text and a prompt speech (the code is also provided in [inference.py](./models/tts/maskgct/maskgct_inference.py)).
67
-
68
- ```python
69
- from models.tts.maskgct.maskgct_utils import *
70
- from huggingface_hub import hf_hub_download
71
- import safetensors
72
- import soundfile as sf
73
-
74
- if __name__ == "__main__":
75
-
76
- # build model
77
- device = torch.device("cuda:0")
78
- cfg_path = "./models/tts/maskgct/config/maskgct.json"
79
- cfg = load_config(cfg_path)
80
- # 1. build semantic model (w2v-bert-2.0)
81
- semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
82
- # 2. build semantic codec
83
- semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
84
- # 3. build acoustic codec
85
- codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device)
86
- # 4. build t2s model
87
- t2s_model = build_t2s_model(cfg.model.t2s_model, device)
88
- # 5. build s2a model
89
- s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
90
- s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)
91
-
92
- # download checkpoint
93
- ...
94
-
95
- # load semantic codec
96
- safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
97
- # load acoustic codec
98
- safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
99
- safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
100
- # load t2s model
101
- safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
102
- # load s2a model
103
- safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
104
- safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)
105
-
106
- # inference
107
- prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav"
108
- save_path = "[YOUR SAVE PATH]"
109
- prompt_text = " We do not break. We never give in. We never back down."
110
- target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision."
111
- # Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration.
112
- target_len = 18
113
-
114
- maskgct_inference_pipeline = MaskGCT_Inference_Pipeline(
115
- semantic_model,
116
- semantic_codec,
117
- codec_encoder,
118
- codec_decoder,
119
- t2s_model,
120
- s2a_model_1layer,
121
- s2a_model_full,
122
- semantic_mean,
123
- semantic_std,
124
- device,
125
- )
126
-
127
- recovered_audio = maskgct_inference_pipeline.maskgct_inference(
128
- prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len
129
- )
130
- sf.write(save_path, recovered_audio, 24000)
131
- ```
132
-
133
- **Jupyter Notebook**
134
-
135
- We also provide a [jupyter notebook](./models/tts/maskgct/maskgct_demo.ipynb) to show more details of MaskGCT inference.
136
-
137
-
138
- ## Evaluation Results of MaskGCT
139
-
140
- | System | SIM-O↑ | WER↓ | FSD↓ | SMOS↑ | CMOS↑ |
141
- | :--- | :---: | :---: | :---: | :---: | :---: |
142
- | | | **LibriSpeech test-clean** |
143
- | Ground Truth | 0.68 | 1.94 | | 4.05Β±0.12 | 0.00 |
144
- | VALL-E | 0.50 | 5.90 | - | 3.47 Β±0.26 | -0.52Β±0.22 |
145
- | VoiceBox | 0.64 | 2.03 | 0.762 | 3.80Β±0.17 | -0.41Β±0.13 |
146
- | NaturalSpeech 3 | 0.67 | 1.94 | 0.786 | 4.26Β±0.10 | 0.16Β±0.14 |
147
- | VoiceCraft | 0.45 | 4.68 | 0.981 | 3.52Β±0.21 | -0.33 Β±0.16 |
148
- | XTTS-v2 | 0.51 | 4.20 | 0.945 | 3.02Β±0.22 | -0.98 Β±0.19 |
149
- | MaskGCT | 0.687(0.723) | 2.634(1.976) | 0.886 | 4.27Β±0.14 | 0.10Β±0.16 |
150
- | MaskGCT(gt length) | 0.697 | 2.012 | 0.746 | 4.33Β±0.11 | 0.13Β±0.13 |
151
- | | | **SeedTTS test-en** |
152
- | Ground Truth | 0.730 | 2.143 | | 3.92Β±0.15 | 0.00 |
153
- | CosyVoice | 0.643 | 4.079 | 0.316 | 3.52Β±0.17 | -0.41 Β±0.18 |
154
- | XTTS-v2 | 0.463 | 3.248 | 0.484 | 3.15Β±0.22 | -0.86Β±0.19 |
155
- | VoiceCraft | 0.470 | 7.556 | 0.226 | 3.18Β±0.20 | -1.08 Β±0.15 |
156
- | MaskGCT | 0.717(0.760) | 2.623(1.283) | 0.188 | 4.24 Β±0.12 | 0.03 Β±0.14 |
157
- | MaskGCT(gt length) | 0.728 | 2.466 | 0.159 | 4.13 Β±0.17 | 0.12 Β±0.15 |
158
- | | | **SeedTTS test-zh** |
159
- | Ground Truth | 0.750 | 1.254 | | 3.86 Β±0.17 | 0.00 |
160
- | CosyVoice | 0.750 | 4.089 | 0.276 | 3.54 Β±0.12 | -0.45 Β±0.15 |
161
- | XTTS-v2 | 0.635 | 2.876 | 0.413 | 2.95 Β±0.18 | -0.81 Β±0.22 |
162
- | MaskGCT | 0.774(0.805) | 2.273(0.843) | 0.106 | 4.09 Β±0.12 | 0.05 Β±0.17 |
163
- | MaskGCT(gt length) | 0.777 | 2.183 | 0.101 | 4.11 Β±0.12 | 0.08Β±0.18 |
164
-
165
- ## Citations
166
-
167
- If you use MaskGCT in your research, please cite the following paper:
168
-
169
- ```bibtex
170
- @article{wang2024maskgct,
171
- title={MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer},
172
- author={Wang, Yuancheng and Zhan, Haoyue and Liu, Liwei and Zeng, Ruihong and Guo, Haotian and Zheng, Jiachen and Zhang, Qiang and Zhang, Shunsi and Wu, Zhizheng},
173
- journal={arXiv preprint arXiv:2409.00750},
174
- year={2024}
175
- }
176
-
177
- @article{zhang2023amphion,
178
- title={Amphion: An open-source audio, music and speech generation toolkit},
179
- author={Zhang, Xueyao and Xue, Liumeng and Wang, Yuancheng and Gu, Yicheng and Chen, Xi and Fang, Zihao and Chen, Haopeng and Zou, Lexiao and Wang, Chaoren and Han, Jun and others},
180
- journal={arXiv preprint arXiv:2312.09911},
181
- year={2023}
182
- }
183
- ```
 
1
+ ---
2
+ license: mit
3
+ title: MaskGCT TTS Demo
4
+ sdk: gradio
5
+ emoji: 😻
6
+ colorFrom: purple
7
+ colorTo: purple
8
+ pinned: false
9
+ short_description: MaskGCT TTS Demo
10
+ ---