|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ConvolutionModule definition.""" |
|
|
|
from typing import Tuple |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
class ConvolutionModule(nn.Module): |
|
"""ConvolutionModule in Conformer model.""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
kernel_size: int = 15, |
|
activation: nn.Module = nn.ReLU(), |
|
norm: str = "batch_norm", |
|
causal: bool = False, |
|
bias: bool = True, |
|
adaptive_scale: bool = False, |
|
init_weights: bool = False, |
|
): |
|
"""Construct an ConvolutionModule object. |
|
Args: |
|
channels (int): The number of channels of conv layers. |
|
kernel_size (int): Kernel size of conv layers. |
|
causal (int): Whether use causal convolution or not |
|
""" |
|
super().__init__() |
|
self.bias = bias |
|
self.channels = channels |
|
self.kernel_size = kernel_size |
|
self.adaptive_scale = adaptive_scale |
|
self.ada_scale = torch.nn.Parameter( |
|
torch.ones([1, 1, channels]), requires_grad=adaptive_scale |
|
) |
|
self.ada_bias = torch.nn.Parameter( |
|
torch.zeros([1, 1, channels]), requires_grad=adaptive_scale |
|
) |
|
|
|
self.pointwise_conv1 = nn.Conv1d( |
|
channels, |
|
2 * channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=bias, |
|
) |
|
|
|
|
|
|
|
|
|
if causal: |
|
padding = 0 |
|
self.lorder = kernel_size - 1 |
|
else: |
|
|
|
assert (kernel_size - 1) % 2 == 0 |
|
padding = (kernel_size - 1) // 2 |
|
self.lorder = 0 |
|
self.depthwise_conv = nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
stride=1, |
|
padding=padding, |
|
groups=channels, |
|
bias=bias, |
|
) |
|
|
|
assert norm in ["batch_norm", "layer_norm"] |
|
if norm == "batch_norm": |
|
self.use_layer_norm = False |
|
self.norm = nn.BatchNorm1d(channels) |
|
else: |
|
self.use_layer_norm = True |
|
self.norm = nn.LayerNorm(channels) |
|
|
|
self.pointwise_conv2 = nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=bias, |
|
) |
|
self.activation = activation |
|
if init_weights: |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
pw_max = self.channels**-0.5 |
|
dw_max = self.kernel_size**-0.5 |
|
torch.nn.init.uniform_(self.pointwise_conv1.weight.data, -pw_max, pw_max) |
|
if self.bias: |
|
torch.nn.init.uniform_(self.pointwise_conv1.bias.data, -pw_max, pw_max) |
|
torch.nn.init.uniform_(self.depthwise_conv.weight.data, -dw_max, dw_max) |
|
if self.bias: |
|
torch.nn.init.uniform_(self.depthwise_conv.bias.data, -dw_max, dw_max) |
|
torch.nn.init.uniform_(self.pointwise_conv2.weight.data, -pw_max, pw_max) |
|
if self.bias: |
|
torch.nn.init.uniform_(self.pointwise_conv2.bias.data, -pw_max, pw_max) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
cache: torch.Tensor = torch.zeros((0, 0, 0)), |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Compute convolution module. |
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, channels). |
|
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), |
|
(0, 0, 0) means fake mask. |
|
cache (torch.Tensor): left context cache, it is only |
|
used in causal convolution (#batch, channels, cache_t), |
|
(0, 0, 0) meas fake cache. |
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, channels). |
|
""" |
|
if self.adaptive_scale: |
|
x = self.ada_scale * x + self.ada_bias |
|
|
|
x = x.transpose(1, 2) |
|
|
|
if mask_pad.size(2) > 0: |
|
x.masked_fill_(~mask_pad, 0.0) |
|
|
|
if self.lorder > 0: |
|
if cache.size(2) == 0: |
|
x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0) |
|
else: |
|
assert cache.size(0) == x.size(0) |
|
assert cache.size(1) == x.size(1) |
|
x = torch.cat((cache, x), dim=2) |
|
assert x.size(2) > self.lorder |
|
new_cache = x[:, :, -self.lorder :] |
|
else: |
|
|
|
|
|
|
|
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) |
|
|
|
|
|
x = self.pointwise_conv1(x) |
|
x = nn.functional.glu(x, dim=1) |
|
|
|
|
|
x = self.depthwise_conv(x) |
|
if self.use_layer_norm: |
|
x = x.transpose(1, 2) |
|
x = self.activation(self.norm(x)) |
|
if self.use_layer_norm: |
|
x = x.transpose(1, 2) |
|
x = self.pointwise_conv2(x) |
|
|
|
if mask_pad.size(2) > 0: |
|
x.masked_fill_(~mask_pad, 0.0) |
|
|
|
return x.transpose(1, 2), new_cache |
|
|