|
import gradio as gr |
|
import torch |
|
import safetensors |
|
from huggingface_hub import hf_hub_download |
|
import soundfile as sf |
|
import os |
|
|
|
import numpy as np |
|
import librosa |
|
from models.codec.kmeans.repcodec_model import RepCodec |
|
from models.tts.maskgct.maskgct_s2a import MaskGCT_S2A |
|
from models.tts.maskgct.maskgct_t2s import MaskGCT_T2S |
|
from models.codec.amphion_codec.codec import CodecEncoder, CodecDecoder |
|
from transformers import Wav2Vec2BertModel |
|
from utils.util import load_config |
|
from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p |
|
|
|
from transformers import SeamlessM4TFeatureExtractor |
|
|
|
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "CPU") |
|
|
|
|
|
|
|
def g2p_(text, language): |
|
if language in ["zh", "en"]: |
|
return chn_eng_g2p(text) |
|
else: |
|
return g2p(text, sentence=None, language=language) |
|
|
|
|
|
def build_t2s_model(cfg, device): |
|
t2s_model = MaskGCT_T2S(cfg=cfg) |
|
t2s_model.eval() |
|
t2s_model.to(device) |
|
return t2s_model |
|
|
|
|
|
def build_s2a_model(cfg, device): |
|
soundstorm_model = MaskGCT_S2A(cfg=cfg) |
|
soundstorm_model.eval() |
|
soundstorm_model.to(device) |
|
return soundstorm_model |
|
|
|
|
|
def build_semantic_model(device): |
|
semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0") |
|
semantic_model.eval() |
|
semantic_model.to(device) |
|
stat_mean_var = torch.load("./models/tts/maskgct/ckpt/wav2vec2bert_stats.pt") |
|
semantic_mean = stat_mean_var["mean"] |
|
semantic_std = torch.sqrt(stat_mean_var["var"]) |
|
semantic_mean = semantic_mean.to(device) |
|
semantic_std = semantic_std.to(device) |
|
return semantic_model, semantic_mean, semantic_std |
|
|
|
|
|
def build_semantic_codec(cfg, device): |
|
semantic_codec = RepCodec(cfg=cfg) |
|
semantic_codec.eval() |
|
semantic_codec.to(device) |
|
return semantic_codec |
|
|
|
|
|
def build_acoustic_codec(cfg, device): |
|
codec_encoder = CodecEncoder(cfg=cfg.encoder) |
|
codec_decoder = CodecDecoder(cfg=cfg.decoder) |
|
codec_encoder.eval() |
|
codec_decoder.eval() |
|
codec_encoder.to(device) |
|
codec_decoder.to(device) |
|
return codec_encoder, codec_decoder |
|
|
|
|
|
@torch.no_grad() |
|
def extract_features(speech, processor): |
|
inputs = processor(speech, sampling_rate=16000, return_tensors="pt") |
|
input_features = inputs["input_features"][0] |
|
attention_mask = inputs["attention_mask"][0] |
|
return input_features, attention_mask |
|
|
|
|
|
@torch.no_grad() |
|
def extract_semantic_code(semantic_mean, semantic_std, input_features, attention_mask): |
|
vq_emb = semantic_model( |
|
input_features=input_features, |
|
attention_mask=attention_mask, |
|
output_hidden_states=True, |
|
) |
|
feat = vq_emb.hidden_states[17] |
|
feat = (feat - semantic_mean.to(feat)) / semantic_std.to(feat) |
|
|
|
semantic_code, rec_feat = semantic_codec.quantize(feat) |
|
return semantic_code, rec_feat |
|
|
|
|
|
@torch.no_grad() |
|
def extract_acoustic_code(speech): |
|
vq_emb = codec_encoder(speech.unsqueeze(1)) |
|
_, vq, _, _, _ = codec_decoder.quantizer(vq_emb) |
|
acoustic_code = vq.permute(1, 2, 0) |
|
return acoustic_code |
|
|
|
|
|
@torch.no_grad() |
|
def text2semantic( |
|
device, |
|
prompt_speech, |
|
prompt_text, |
|
prompt_language, |
|
target_text, |
|
target_language, |
|
target_len=None, |
|
n_timesteps=50, |
|
cfg=2.5, |
|
rescale_cfg=0.75, |
|
): |
|
|
|
prompt_phone_id = g2p_(prompt_text, prompt_language)[1] |
|
|
|
target_phone_id = g2p_(target_text, target_language)[1] |
|
|
|
if target_len is None: |
|
target_len = int( |
|
(len(prompt_speech) * len(target_phone_id) / len(prompt_phone_id)) |
|
/ 16000 |
|
* 50 |
|
) |
|
else: |
|
target_len = int(target_len * 50) |
|
|
|
prompt_phone_id = torch.tensor(prompt_phone_id, dtype=torch.long).to(device) |
|
target_phone_id = torch.tensor(target_phone_id, dtype=torch.long).to(device) |
|
|
|
phone_id = torch.cat([prompt_phone_id, target_phone_id]) |
|
|
|
input_fetures, attention_mask = extract_features(prompt_speech, processor) |
|
input_fetures = input_fetures.unsqueeze(0).to(device) |
|
attention_mask = attention_mask.unsqueeze(0).to(device) |
|
semantic_code, _ = extract_semantic_code( |
|
semantic_mean, semantic_std, input_fetures, attention_mask |
|
) |
|
|
|
predict_semantic = t2s_model.reverse_diffusion( |
|
semantic_code[:, :], |
|
target_len, |
|
phone_id.unsqueeze(0), |
|
n_timesteps=n_timesteps, |
|
cfg=cfg, |
|
rescale_cfg=rescale_cfg, |
|
) |
|
|
|
combine_semantic_code = torch.cat([semantic_code[:, :], predict_semantic], dim=-1) |
|
prompt_semantic_code = semantic_code |
|
|
|
return combine_semantic_code, prompt_semantic_code |
|
|
|
|
|
@torch.no_grad() |
|
def semantic2acoustic( |
|
device, |
|
combine_semantic_code, |
|
acoustic_code, |
|
n_timesteps=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], |
|
cfg=2.5, |
|
rescale_cfg=0.75, |
|
): |
|
|
|
semantic_code = combine_semantic_code |
|
|
|
cond = s2a_model_1layer.cond_emb(semantic_code) |
|
prompt = acoustic_code[:, :, :] |
|
predict_1layer = s2a_model_1layer.reverse_diffusion( |
|
cond=cond, |
|
prompt=prompt, |
|
temp=1.5, |
|
filter_thres=0.98, |
|
n_timesteps=n_timesteps[:1], |
|
cfg=cfg, |
|
rescale_cfg=rescale_cfg, |
|
) |
|
|
|
cond = s2a_model_full.cond_emb(semantic_code) |
|
prompt = acoustic_code[:, :, :] |
|
predict_full = s2a_model_full.reverse_diffusion( |
|
cond=cond, |
|
prompt=prompt, |
|
temp=1.5, |
|
filter_thres=0.98, |
|
n_timesteps=n_timesteps, |
|
cfg=cfg, |
|
rescale_cfg=rescale_cfg, |
|
gt_code=predict_1layer, |
|
) |
|
|
|
vq_emb = codec_decoder.vq2emb(predict_full.permute(2, 0, 1), n_quantizers=12) |
|
recovered_audio = codec_decoder(vq_emb) |
|
prompt_vq_emb = codec_decoder.vq2emb(prompt.permute(2, 0, 1), n_quantizers=12) |
|
recovered_prompt_audio = codec_decoder(prompt_vq_emb) |
|
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy() |
|
recovered_audio = recovered_audio[0][0].cpu().numpy() |
|
combine_audio = np.concatenate([recovered_prompt_audio, recovered_audio]) |
|
|
|
return combine_audio, recovered_audio |
|
|
|
|
|
|
|
def load_models(): |
|
cfg_path = "./models/tts/maskgct/config/maskgct.json" |
|
|
|
cfg = load_config(cfg_path) |
|
semantic_model, semantic_mean, semantic_std = build_semantic_model(device) |
|
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device) |
|
codec_encoder, codec_decoder = build_acoustic_codec( |
|
cfg.model.acoustic_codec, device |
|
) |
|
t2s_model = build_t2s_model(cfg.model.t2s_model, device) |
|
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device) |
|
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device) |
|
|
|
|
|
semantic_code_ckpt = hf_hub_download( |
|
"amphion/MaskGCT", filename="semantic_codec/model.safetensors" |
|
) |
|
codec_encoder_ckpt = hf_hub_download( |
|
"amphion/MaskGCT", filename="acoustic_codec/model.safetensors" |
|
) |
|
codec_decoder_ckpt = hf_hub_download( |
|
"amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors" |
|
) |
|
t2s_model_ckpt = hf_hub_download( |
|
"amphion/MaskGCT", filename="t2s_model/model.safetensors" |
|
) |
|
s2a_1layer_ckpt = hf_hub_download( |
|
"amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors" |
|
) |
|
s2a_full_ckpt = hf_hub_download( |
|
"amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors" |
|
) |
|
|
|
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt) |
|
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt) |
|
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt) |
|
safetensors.torch.load_model(t2s_model, t2s_model_ckpt) |
|
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt) |
|
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt) |
|
|
|
return ( |
|
semantic_model, |
|
semantic_mean, |
|
semantic_std, |
|
semantic_codec, |
|
codec_encoder, |
|
codec_decoder, |
|
t2s_model, |
|
s2a_model_1layer, |
|
s2a_model_full, |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def maskgct_inference( |
|
prompt_speech_path, |
|
prompt_text, |
|
target_text, |
|
language="en", |
|
target_language="en", |
|
target_len=None, |
|
n_timesteps=25, |
|
cfg=2.5, |
|
rescale_cfg=0.75, |
|
n_timesteps_s2a=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], |
|
cfg_s2a=2.5, |
|
rescale_cfg_s2a=0.75, |
|
device=torch.device("cuda:5"), |
|
): |
|
speech_16k = librosa.load(prompt_speech_path, sr=16000)[0] |
|
speech = librosa.load(prompt_speech_path, sr=24000)[0] |
|
|
|
combine_semantic_code, _ = text2semantic( |
|
device, |
|
speech_16k, |
|
prompt_text, |
|
language, |
|
target_text, |
|
target_language, |
|
target_len, |
|
n_timesteps, |
|
cfg, |
|
rescale_cfg, |
|
) |
|
acoustic_code = extract_acoustic_code(torch.tensor(speech).unsqueeze(0).to(device)) |
|
_, recovered_audio = semantic2acoustic( |
|
device, |
|
combine_semantic_code, |
|
acoustic_code, |
|
n_timesteps=n_timesteps_s2a, |
|
cfg=cfg_s2a, |
|
rescale_cfg=rescale_cfg_s2a, |
|
) |
|
|
|
return recovered_audio |
|
|
|
|
|
@torch.no_grad() |
|
def inference( |
|
prompt_wav, |
|
prompt_text, |
|
target_text, |
|
target_len, |
|
n_timesteps, |
|
language, |
|
target_language, |
|
): |
|
save_path = "./output/output.wav" |
|
os.makedirs("./output", exist_ok=True) |
|
recovered_audio = maskgct_inference( |
|
prompt_wav, |
|
prompt_text, |
|
target_text, |
|
language, |
|
target_language, |
|
target_len=target_len, |
|
n_timesteps=int(n_timesteps), |
|
device=device, |
|
) |
|
sf.write(save_path, recovered_audio, 24000) |
|
return save_path |
|
|
|
|
|
|
|
language_list = ["en", "zh", "ja", "ko", "fr", "de"] |
|
|
|
|
|
iface = gr.Interface( |
|
fn=inference, |
|
inputs=[ |
|
gr.Audio(label="Upload Prompt Wav", type="filepath"), |
|
gr.Textbox(label="Prompt Text"), |
|
gr.Textbox(label="Target Text"), |
|
gr.Number( |
|
label="Target Duration (in seconds)", value=None |
|
), |
|
gr.Slider( |
|
label="Number of Timesteps", minimum=15, maximum=100, value=25, step=1 |
|
), |
|
gr.Dropdown(label="Language", choices=language_list, value="en"), |
|
gr.Dropdown(label="Target Language", choices=language_list, value="en"), |
|
], |
|
outputs=gr.Audio(label="Generated Audio"), |
|
title="MaskGCT TTS Demo", |
|
description="Generate speech from text using the MaskGCT model.", |
|
) |
|
|
|
|
|
iface.launch(allowed_paths=["./output"]) |
|
|