|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from . import attentions |
|
from torch import nn |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
class Mish(nn.Module): |
|
def __init__(self): |
|
super(Mish, self).__init__() |
|
|
|
def forward(self, x): |
|
return x * torch.tanh(F.softplus(x)) |
|
|
|
|
|
class Conv1dGLU(nn.Module): |
|
""" |
|
Conv1d + GLU(Gated Linear Unit) with residual connection. |
|
For GLU refer to https://arxiv.org/abs/1612.08083 paper. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, dropout): |
|
super(Conv1dGLU, self).__init__() |
|
self.out_channels = out_channels |
|
self.conv1 = nn.Conv1d( |
|
in_channels, 2 * out_channels, kernel_size=kernel_size, padding=2 |
|
) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
residual = x |
|
x = self.conv1(x) |
|
x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1) |
|
x = x1 * torch.sigmoid(x2) |
|
x = residual + self.dropout(x) |
|
return x |
|
|
|
|
|
class StyleEncoder(torch.nn.Module): |
|
def __init__(self, in_dim=513, hidden_dim=128, out_dim=256): |
|
|
|
super().__init__() |
|
|
|
self.in_dim = in_dim |
|
self.hidden_dim = hidden_dim |
|
self.out_dim = out_dim |
|
self.kernel_size = 5 |
|
self.n_head = 2 |
|
self.dropout = 0.1 |
|
|
|
self.spectral = nn.Sequential( |
|
nn.Conv1d(self.in_dim, self.hidden_dim, 1), |
|
Mish(), |
|
nn.Dropout(self.dropout), |
|
nn.Conv1d(self.hidden_dim, self.hidden_dim, 1), |
|
Mish(), |
|
nn.Dropout(self.dropout), |
|
) |
|
|
|
self.temporal = nn.Sequential( |
|
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout), |
|
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout), |
|
) |
|
|
|
self.slf_attn = attentions.MultiHeadAttention( |
|
self.hidden_dim, |
|
self.hidden_dim, |
|
self.n_head, |
|
p_dropout=self.dropout, |
|
proximal_bias=False, |
|
proximal_init=True, |
|
) |
|
self.atten_drop = nn.Dropout(self.dropout) |
|
self.fc = nn.Conv1d(self.hidden_dim, self.out_dim, 1) |
|
|
|
def forward(self, x, mask=None): |
|
|
|
|
|
x = self.spectral(x) * mask |
|
|
|
x = self.temporal(x) * mask |
|
|
|
|
|
attn_mask = mask.unsqueeze(2) * mask.unsqueeze(-1) |
|
y = self.slf_attn(x, x, attn_mask=attn_mask) |
|
x = x + self.atten_drop(y) |
|
|
|
|
|
x = self.fc(x) |
|
|
|
|
|
w = self.temporal_avg_pool(x, mask=mask) |
|
|
|
return w |
|
|
|
def temporal_avg_pool(self, x, mask=None): |
|
if mask is None: |
|
out = torch.mean(x, dim=2) |
|
else: |
|
len_ = mask.sum(dim=2) |
|
x = x.sum(dim=2) |
|
|
|
out = torch.div(x, len_) |
|
return out |
|
|