|
import json |
|
import random |
|
from typing import List |
|
|
|
import spaces |
|
import gradio as gr |
|
from huggingface_hub import ModelCard |
|
|
|
from src.tasks.images.sd import gen_img, ControlNetReq, SDReq, SDImg2ImgReq, SDInpaintReq |
|
|
|
|
|
models = ["black-forest-labs/FLUX.1-dev"] |
|
with open("data/images/loras/flux.json", "r") as f: |
|
loras = json.load(f) |
|
|
|
|
|
def flux_tab(): |
|
""" |
|
Create the image tab for Generative Image Generation Models |
|
|
|
Args: |
|
models: list |
|
A list containing the models repository paths |
|
gap_iol, gap_la, gap_le, gap_eio, gap_io: Optional[List[dict]] |
|
A list of dictionaries containing the title and component for the custom gradio component |
|
Example: |
|
def gr_comp(): |
|
gr.Label("Hello World") |
|
|
|
[ |
|
{ |
|
'title': "Title", |
|
'component': gr_comp() |
|
} |
|
] |
|
loras: list |
|
A list of dictionaries containing the image and title for the Loras Gallery |
|
Generally a loaded json file from the data folder |
|
|
|
""" |
|
def process_gaps(gaps: List[dict]): |
|
for gap in gaps: |
|
with gr.Accordion(gap['title']): |
|
gap['component'] |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group() as image_options: |
|
model = gr.Dropdown(label="Models", choices=models, value=models[0], interactive=True) |
|
prompt = gr.Textbox(lines=5, label="Prompt") |
|
negative_prompt = gr.Textbox(label="Negative Prompt") |
|
fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) 🧪") |
|
|
|
|
|
with gr.Accordion("Loras", open=True): |
|
lora_gallery = gr.Gallery( |
|
label="Gallery", |
|
value=[(lora['image'], lora['title']) for lora in loras], |
|
allow_preview=False, |
|
columns=[3], |
|
type="pil" |
|
) |
|
|
|
with gr.Group(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path") |
|
selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA") |
|
|
|
custom_lora_info = gr.HTML(visible=False) |
|
add_lora = gr.Button(value="Add LoRA") |
|
|
|
enabled_loras = gr.State(value=[]) |
|
with gr.Group(): |
|
with gr.Row(): |
|
for i in range(6): |
|
with gr.Column(): |
|
with gr.Column(scale=2): |
|
globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True) |
|
with gr.Column(): |
|
globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False) |
|
|
|
|
|
with gr.Accordion("Embeddings", open=False): |
|
gr.Label("To be implemented") |
|
|
|
|
|
with gr.Accordion("Image Options"): |
|
with gr.Tabs(): |
|
image_options = { |
|
"img2img": "Upload Image", |
|
"inpaint": "Upload Image", |
|
"canny": "Upload Image", |
|
"pose": "Upload Image", |
|
"depth": "Upload Image", |
|
} |
|
|
|
for image_option, label in image_options.items(): |
|
with gr.Tab(image_option): |
|
if not image_option in ['inpaint', 'scribble']: |
|
globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil") |
|
elif image_option in ['inpaint', 'scribble']: |
|
globals()[f"{image_option}_image"] = gr.ImageEditor( |
|
label=label, |
|
image_mode='RGB', |
|
layers=False, |
|
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(), |
|
interactive=True, |
|
type="pil", |
|
) |
|
|
|
|
|
globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True) |
|
|
|
resize_mode = gr.Radio( |
|
label="Resize Mode", |
|
choices=["crop and resize", "resize only", "resize and fill"], |
|
value="resize and fill", |
|
interactive=True |
|
) |
|
|
|
|
|
with gr.Column(): |
|
with gr.Group(): |
|
output_images = gr.Gallery( |
|
label="Output Images", |
|
value=[], |
|
allow_preview=True, |
|
type="pil", |
|
interactive=False, |
|
) |
|
generate_images = gr.Button(value="Generate Images", variant="primary") |
|
|
|
with gr.Accordion("Advance Settings", open=True): |
|
with gr.Row(): |
|
scheduler = gr.Dropdown( |
|
label="Scheduler", |
|
choices = [ |
|
"fm_euler" |
|
], |
|
value="fm_euler", |
|
interactive=True |
|
) |
|
|
|
with gr.Row(): |
|
for column in range(2): |
|
with gr.Column(): |
|
options = [ |
|
("Height", "image_height", 64, 1024, 64, 1024, True), |
|
("Width", "image_width", 64, 1024, 64, 1024, True), |
|
("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True), |
|
("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True), |
|
("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False), |
|
("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True), |
|
("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True), |
|
] |
|
for label, var_name, min_val, max_val, step, value, visible in options[column::2]: |
|
globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True) |
|
|
|
with gr.Row(): |
|
refiner = gr.Checkbox( |
|
label="Refiner 🧪", |
|
value=False, |
|
) |
|
vae = gr.Checkbox( |
|
label="VAE", |
|
value=True, |
|
) |
|
|
|
|
|
|
|
|
|
fast_generation.change(update_fast_generation, [model, fast_generation], [image_guidance_scale, image_num_inference_steps]) |
|
|
|
|
|
|
|
lora_gallery.select(selected_lora_from_gallery, None, selected_lora) |
|
custom_lora.change(update_selected_lora, custom_lora, [custom_lora, selected_lora]) |
|
add_lora.click(add_to_enabled_loras, [model, selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras]) |
|
enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) |
|
|
|
for i in range(6): |
|
globals()[f"lora_remove_{i}"].click( |
|
lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index), |
|
[enabled_loras], |
|
[enabled_loras] |
|
) |
|
|
|
|
|
|
|
generate_images.click( |
|
generate_image, |
|
[ |
|
model, prompt, negative_prompt, fast_generation, enabled_loras, |
|
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, |
|
img2img_image, inpaint_image, canny_image, pose_image, depth_image, |
|
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, |
|
resize_mode, |
|
scheduler, image_height, image_width, image_num_images_per_prompt, |
|
image_num_inference_steps, image_guidance_scale, image_seed, |
|
refiner, vae |
|
], |
|
[output_images] |
|
) |
|
|
|
|
|
|
|
def update_fast_generation(model, fast_generation): |
|
if fast_generation: |
|
return ( |
|
gr.update( |
|
value=3.5 |
|
), |
|
gr.update( |
|
value=8 |
|
) |
|
) |
|
|
|
|
|
def selected_lora_from_gallery(evt: gr.SelectData): |
|
return ( |
|
gr.update( |
|
value=evt.index |
|
) |
|
) |
|
|
|
|
|
def update_selected_lora(custom_lora): |
|
link = custom_lora.split("/") |
|
|
|
if len(link) == 2: |
|
model_card = ModelCard.load(custom_lora) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"""https://huggingface.co/{custom_lora}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}""" |
|
|
|
custom_lora_info_css = """ |
|
<style> |
|
.custom-lora-info { |
|
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif; |
|
background: linear-gradient(135deg, #4a90e2, #7b61ff); |
|
color: white; |
|
padding: 16px; |
|
border-radius: 8px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
margin: 16px 0; |
|
} |
|
.custom-lora-header { |
|
font-size: 18px; |
|
font-weight: 600; |
|
margin-bottom: 12px; |
|
} |
|
.custom-lora-content { |
|
display: flex; |
|
align-items: center; |
|
background-color: rgba(255, 255, 255, 0.1); |
|
border-radius: 6px; |
|
padding: 12px; |
|
} |
|
.custom-lora-image { |
|
width: 80px; |
|
height: 80px; |
|
object-fit: cover; |
|
border-radius: 6px; |
|
margin-right: 16px; |
|
} |
|
.custom-lora-text h3 { |
|
margin: 0 0 8px 0; |
|
font-size: 16px; |
|
font-weight: 600; |
|
} |
|
.custom-lora-text small { |
|
font-size: 14px; |
|
opacity: 0.9; |
|
} |
|
.custom-trigger-word { |
|
background-color: rgba(255, 255, 255, 0.2); |
|
padding: 2px 6px; |
|
border-radius: 4px; |
|
font-weight: 600; |
|
} |
|
</style> |
|
""" |
|
|
|
custom_lora_info_html = f""" |
|
<div class="custom-lora-info"> |
|
<div class="custom-lora-header">Custom LoRA: {custom_lora}</div> |
|
<div class="custom-lora-content"> |
|
<img class="custom-lora-image" src="{image_url}" alt="LoRA preview"> |
|
<div class="custom-lora-text"> |
|
<h3>{link[1].replace("-", " ").replace("_", " ")}</h3> |
|
<small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small> |
|
</div> |
|
</div> |
|
</div> |
|
""" |
|
|
|
custom_lora_info_html = f"{custom_lora_info_css}{custom_lora_info_html}" |
|
|
|
return ( |
|
gr.update( |
|
value=custom_lora, |
|
), |
|
gr.update( |
|
value=custom_lora_info_html, |
|
visible=True |
|
) |
|
) |
|
|
|
else: |
|
return ( |
|
gr.update( |
|
value=custom_lora, |
|
), |
|
gr.update( |
|
value=custom_lora_info_html if len(link) == 0 else "", |
|
visible=False |
|
) |
|
) |
|
|
|
|
|
def add_to_enabled_loras(model, selected_lora, enabled_loras): |
|
lora_data = loras |
|
try: |
|
selected_lora = int(selected_lora) |
|
|
|
if 0 <= selected_lora: |
|
lora_info = lora_data[selected_lora] |
|
enabled_loras.append({ |
|
"repo_id": lora_info["repo"], |
|
"trigger_word": lora_info["trigger_word"] |
|
}) |
|
except ValueError: |
|
link = selected_lora.split("/") |
|
if len(link) == 2: |
|
model_card = ModelCard.load(selected_lora) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
enabled_loras.append({ |
|
"repo_id": selected_lora, |
|
"trigger_word": trigger_word |
|
}) |
|
|
|
return ( |
|
gr.update( |
|
value="" |
|
), |
|
gr.update( |
|
value="", |
|
visible=False |
|
), |
|
gr.update( |
|
value=enabled_loras |
|
) |
|
) |
|
|
|
|
|
def update_lora_sliders(enabled_loras): |
|
sliders = [] |
|
remove_buttons = [] |
|
|
|
for lora in enabled_loras: |
|
sliders.append( |
|
gr.update( |
|
label=lora.get("repo_id", ""), |
|
info=f"Trigger Word: {lora.get('trigger_word', '')}", |
|
visible=True, |
|
interactive=True |
|
) |
|
) |
|
remove_buttons.append( |
|
gr.update( |
|
visible=True, |
|
interactive=True |
|
) |
|
) |
|
|
|
if len(sliders) < 6: |
|
for i in range(len(sliders), 6): |
|
sliders.append( |
|
gr.update( |
|
visible=False |
|
) |
|
) |
|
remove_buttons.append( |
|
gr.update( |
|
visible=False |
|
) |
|
) |
|
|
|
return *sliders, *remove_buttons |
|
|
|
|
|
def remove_from_enabled_loras(enabled_loras, index): |
|
enabled_loras.pop(index) |
|
return ( |
|
gr.update( |
|
value=enabled_loras |
|
) |
|
) |
|
|
|
|
|
@spaces.GPU |
|
def generate_image( |
|
model, prompt, negative_prompt, fast_generation, enabled_loras, |
|
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, |
|
img2img_image, inpaint_image, canny_image, pose_image, depth_image, |
|
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, |
|
resize_mode, |
|
scheduler, image_height, image_width, image_num_images_per_prompt, |
|
image_num_inference_steps, image_guidance_scale, image_seed, |
|
refiner, vae |
|
): |
|
base_args = { |
|
"model": model, |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"fast_generation": fast_generation, |
|
"loras": None, |
|
"resize_mode": resize_mode, |
|
"scheduler": scheduler, |
|
"height": int(image_height), |
|
"width": int(image_width), |
|
"num_images_per_prompt": float(image_num_images_per_prompt), |
|
"num_inference_steps": float(image_num_inference_steps), |
|
"guidance_scale": float(image_guidance_scale), |
|
"seed": int(image_seed), |
|
"refiner": refiner, |
|
"vae": vae, |
|
"controlnet_config": None, |
|
} |
|
base_args = SDReq(**base_args) |
|
|
|
if len(enabled_loras) > 0: |
|
base_args.loras = [] |
|
for enabled_lora, lora_slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]): |
|
if enabled_lora.get("repo_id", None): |
|
base_args.loras.append( |
|
{ |
|
"repo_id": enabled_lora["repo_id"], |
|
"weight": lora_slider |
|
} |
|
) |
|
|
|
image = None |
|
mask_image = None |
|
strength = None |
|
|
|
if img2img_image: |
|
image = img2img_image |
|
strength = float(img2img_strength) |
|
|
|
base_args = SDImg2ImgReq( |
|
**base_args.__dict__, |
|
image=image, |
|
strength=strength |
|
) |
|
elif inpaint_image: |
|
image = inpaint_image['background'] if not all(pixel == (0, 0, 0) for pixel in list(inpaint_image['background'].getdata())) else None |
|
mask_image = inpaint_image['layers'][0] if image else None |
|
strength = float(inpaint_strength) |
|
|
|
base_args = SDInpaintReq( |
|
**base_args.__dict__, |
|
image=image, |
|
mask_image=mask_image, |
|
strength=strength |
|
) |
|
elif any([canny_image, pose_image, depth_image]): |
|
base_args.controlnet_config = ControlNetReq( |
|
controlnets=[], |
|
control_images=[], |
|
controlnet_conditioning_scale=[] |
|
) |
|
|
|
if canny_image: |
|
base_args.controlnet_config.controlnets.append("canny_fl") |
|
base_args.controlnet_config.control_images.append(canny_image) |
|
base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength)) |
|
if pose_image: |
|
base_args.controlnet_config.controlnets.append("pose_fl") |
|
base_args.controlnet_config.control_images.append(pose_image) |
|
base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength)) |
|
if depth_image: |
|
base_args.controlnet_config.controlnets.append("depth_fl") |
|
base_args.controlnet_config.control_images.append(depth_image) |
|
base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength)) |
|
else: |
|
base_args = SDReq(**base_args.__dict__) |
|
|
|
images = gen_img(base_args) |
|
|
|
return ( |
|
gr.update( |
|
value=images, |
|
interactive=True |
|
) |
|
) |
|
|