|
|
|
|
|
import gradio as gr |
|
from modules.events.flux_events import * |
|
from modules.events.sdxl_events import * |
|
from modules.helpers.common_helpers import * |
|
from modules.helpers.flux_helpers import * |
|
from modules.helpers.sdxl_helpers import * |
|
from config import flux_models, sdxl_models, flux_loras |
|
|
|
|
|
def image_tab(): |
|
with gr.Tabs(): |
|
with gr.Tab("Flux"): |
|
flux_tab() |
|
with gr.Tab("SDXL"): |
|
sdxl_tab() |
|
|
|
|
|
def flux_tab(): |
|
loras = flux_loras |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group() as image_options: |
|
model = gr.Dropdown(label="Models", choices=flux_models, value=flux_models[0], interactive=True) |
|
prompt = gr.Textbox(lines=5, label="Prompt") |
|
fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) 🧪") |
|
|
|
|
|
with gr.Accordion("Loras", open=True): |
|
lora_gallery = gr.Gallery( |
|
label="Gallery", |
|
value=[(lora['image'], lora['title']) for lora in loras], |
|
allow_preview=False, |
|
columns=3, |
|
rows=3, |
|
type="pil" |
|
) |
|
|
|
with gr.Group(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path") |
|
selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA") |
|
|
|
custom_lora_info = gr.HTML(visible=False) |
|
add_lora = gr.Button(value="Add LoRA") |
|
|
|
enabled_loras = gr.State(value=[]) |
|
with gr.Group(): |
|
with gr.Row(): |
|
for i in range(6): |
|
with gr.Column(): |
|
with gr.Column(scale=2): |
|
globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True) |
|
with gr.Column(): |
|
globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False) |
|
|
|
|
|
with gr.Accordion("Embeddings", open=False): |
|
gr.Label("To be implemented") |
|
|
|
|
|
with gr.Accordion("Image Options", open=False): |
|
with gr.Tabs(): |
|
image_options = { |
|
"img2img": "Upload Image", |
|
"inpaint": "Upload Image", |
|
"canny": "Upload Image", |
|
"pose": "Upload Image", |
|
"depth": "Upload Image", |
|
} |
|
|
|
for image_option, label in image_options.items(): |
|
with gr.Tab(image_option): |
|
if not image_option in ['inpaint', 'scribble']: |
|
globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil") |
|
elif image_option in ['inpaint', 'scribble']: |
|
globals()[f"{image_option}_image"] = gr.ImageEditor( |
|
label=label, |
|
image_mode='RGB', |
|
layers=False, |
|
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(), |
|
interactive=True, |
|
type="pil", |
|
) |
|
|
|
|
|
globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True) |
|
|
|
resize_mode = gr.Radio( |
|
label="Resize Mode", |
|
choices=["crop and resize", "resize only", "resize and fill"], |
|
value="resize and fill", |
|
interactive=True |
|
) |
|
|
|
|
|
with gr.Column(): |
|
with gr.Group(): |
|
output_images = gr.Gallery( |
|
label="Output Images", |
|
value=[], |
|
allow_preview=True, |
|
type="pil", |
|
interactive=False, |
|
) |
|
generate_images = gr.Button(value="Generate Images", variant="primary") |
|
|
|
with gr.Accordion("Advance Settings", open=True): |
|
with gr.Row(): |
|
scheduler = gr.Dropdown( |
|
label="Scheduler", |
|
choices = [ |
|
"fm_euler" |
|
], |
|
value="fm_euler", |
|
interactive=True |
|
) |
|
|
|
with gr.Row(): |
|
for column in range(2): |
|
with gr.Column(): |
|
options = [ |
|
("Height", "image_height", 64, 1024, 64, 1024, True), |
|
("Width", "image_width", 64, 1024, 64, 1024, True), |
|
("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True), |
|
("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True), |
|
("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False), |
|
("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True), |
|
("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True), |
|
] |
|
for label, var_name, min_val, max_val, step, value, visible in options[column::2]: |
|
globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True) |
|
|
|
with gr.Row(): |
|
refiner = gr.Checkbox( |
|
label="Refiner 🧪", |
|
value=False, |
|
) |
|
vae = gr.Checkbox( |
|
label="VAE", |
|
value=True, |
|
) |
|
|
|
|
|
|
|
fast_generation.change(update_fast_generation, [fast_generation], [image_guidance_scale, image_num_inference_steps]) |
|
|
|
|
|
|
|
lora_gallery.select(selected_lora_from_gallery, None, selected_lora) |
|
custom_lora.change(update_selected_lora, custom_lora, [selected_lora, custom_lora]) |
|
add_lora.click(add_to_enabled_loras, [selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras]) |
|
enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) |
|
|
|
for i in range(6): |
|
globals()[f"lora_remove_{i}"].click( |
|
lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index), |
|
[enabled_loras], |
|
[enabled_loras] |
|
) |
|
|
|
|
|
|
|
generate_images.click( |
|
generate_image, |
|
[ |
|
model, prompt, fast_generation, enabled_loras, |
|
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, |
|
img2img_image, inpaint_image, canny_image, pose_image, depth_image, |
|
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, |
|
resize_mode, |
|
scheduler, image_height, image_width, image_num_images_per_prompt, |
|
image_num_inference_steps, image_guidance_scale, image_seed, |
|
refiner, vae |
|
], |
|
[output_images] |
|
) |
|
|
|
|
|
def sdxl_tab(): |
|
gr.Label("To be implemented") |
|
|