aai / modules /helpers /common_helpers.py
mantrakp
Refactor ControlNetReq class to remove unused import and add controlnets, control_images, and controlnet_conditioning_scale attributes
07dc8e6
raw
history blame
2.7 kB
import gc
from typing import List, Optional, Dict, Any
import torch
from pydantic import BaseModel
from PIL import Image
from diffusers.schedulers import *
from controlnet_aux.processor import Processor
class ControlNetReq(BaseModel):
controlnets: List[str] # ["canny", "tile", "depth"]
control_images: List[Image.Image]
controlnet_conditioning_scale: List[float]
class Config:
arbitrary_types_allowed=True
class BaseReq(BaseModel):
model: str = ""
prompt: str = ""
fast_generation: Optional[bool] = True
loras: Optional[list] = []
resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill
scheduler: Optional[str] = "euler_fl"
height: int = 1024
width: int = 1024
num_images_per_prompt: int = 1
num_inference_steps: int = 8
guidance_scale: float = 3.5
seed: Optional[int] = 0
refiner: bool = False
vae: bool = True
controlnet_config: Optional[ControlNetReq] = None
custom_addons: Optional[Dict[Any, Any]] = None
class Config:
arbitrary_types_allowed=True
class BaseImg2ImgReq(BaseReq):
image: Image.Image
strength: float = 1.0
class Config:
arbitrary_types_allowed=True
class BaseInpaintReq(BaseImg2ImgReq):
mask_image: Image.Image
class Config:
arbitrary_types_allowed=True
def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
for image in images:
if resize_mode == "resize_only":
image = image.resize((width, height))
elif resize_mode == "crop_and_resize":
image = image.crop((0, 0, width, height))
elif resize_mode == "resize_and_fill":
image = image.resize((width, height), Image.Resampling.LANCZOS)
return images
def get_controlnet_images(controlnet_config: ControlNetReq, height: int, width: int, resize_mode: str):
response_images = []
control_images = resize_images(controlnet_config.control_images, height, width, resize_mode)
for controlnet, image in zip(controlnet_config.controlnets, control_images):
if controlnet == "canny":
processor = Processor('canny')
elif controlnet == "depth":
processor = Processor('depth_midas')
elif controlnet == "pose":
processor = Processor('openpose_full')
else:
raise ValueError(f"Invalid Controlnet: {controlnet}")
response_images.append(processor(image, to_pil=True))
return response_images
def cleanup(pipeline, loras = None):
if loras:
pipeline.unload_lora_weights()
gc.collect()
torch.cuda.empty_cache()