mantrakp
Add text, audio, and video tabs
42ae52a
raw
history blame
14.9 kB
import gc
import random
from typing import List, Optional
import torch
import numpy as np
from pydantic import BaseModel
from PIL import Image
from diffusers import (
FluxPipeline,
FluxImg2ImgPipeline,
FluxInpaintPipeline,
FluxControlNetPipeline,
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetInpaintPipeline,
AutoPipelineForText2Image,
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
)
from diffusers.schedulers import *
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from controlnet_aux.processor import Processor
from photomaker import (
PhotoMakerStableDiffusionXLPipeline,
PhotoMakerStableDiffusionXLControlNetPipeline,
analyze_faces
)
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl, get_weighted_text_embeddings_flux1
from .init_sys import device, models, refiner, safety_checker, feature_extractor, controlnet_models, face_detector
# Models
class ControlNetReq(BaseModel):
controlnets: List[str] # ["canny", "tile", "depth"]
control_images: List[Image.Image]
controlnet_conditioning_scale: List[float]
class Config:
arbitrary_types_allowed=True
class SDReq(BaseModel):
model: str = ""
prompt: str = ""
negative_prompt: Optional[str] = "black-forest-labs/FLUX.1-dev"
fast_generation: Optional[bool] = True
loras: Optional[list] = []
embeddings: Optional[list] = []
resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill
scheduler: Optional[str] = "euler_fl"
height: int = 1024
width: int = 1024
num_images_per_prompt: int = 1
num_inference_steps: int = 8
guidance_scale: float = 3.5
seed: Optional[int] = 0
refiner: bool = False
vae: bool = True
controlnet_config: Optional[ControlNetReq] = None
photomaker_images: Optional[List[Image.Image]] = None
class Config:
arbitrary_types_allowed=True
class SDImg2ImgReq(SDReq):
image: Image.Image
strength: float = 1.0
class Config:
arbitrary_types_allowed=True
class SDInpaintReq(SDImg2ImgReq):
mask_image: Image.Image
class Config:
arbitrary_types_allowed=True
# Helper functions
def get_controlnet(controlnet_config: ControlNetReq):
control_mode = []
controlnet = []
for m in controlnet_models:
for c in controlnet_config.controlnets:
if c in m["layers"]:
control_mode.append(m["layers"].index(c))
controlnet.append(m["controlnet"])
return controlnet, control_mode
def get_pipe(request: SDReq | SDImg2ImgReq | SDInpaintReq):
for m in models:
if m["repo_id"] == request.model:
pipeline = m['pipeline']
controlnet, control_mode = get_controlnet(request.controlnet_config) if request.controlnet_config else (None, None)
pipe_args = {
"pipeline": pipeline,
"control_mode": control_mode,
}
if request.controlnet_config:
pipe_args["controlnet"] = controlnet
if not request.photomaker_images:
if isinstance(request, SDReq):
pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args)
elif isinstance(request, SDImg2ImgReq):
pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args)
elif isinstance(request, SDInpaintReq):
pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args)
else:
raise ValueError(f"Unknown request type: {type(request)}")
elif isinstance(request, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
if request.controlnet_config:
pipe_args['pipeline'] = PhotoMakerStableDiffusionXLControlNetPipeline.from_pipe(**pipe_args)
else:
pipe_args['pipeline'] = PhotoMakerStableDiffusionXLPipeline.from_pipe(**pipe_args)
else:
raise ValueError(f"Invalid request type: {type(request)}")
return pipe_args
def load_scheduler(pipeline, scheduler):
schedulers = {
"dpmpp_2m": (DPMSolverMultistepScheduler, {}),
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
"dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++"}),
"dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "use_karras_sigmas": True}),
"dpmpp_sde": (DPMSolverSinglestepScheduler, {}),
"dpmpp_sde_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
"dpm2": (KDPM2DiscreteScheduler, {}),
"dpm2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"dpm2_a": (KDPM2AncestralDiscreteScheduler, {}),
"dpm2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"euler": (EulerDiscreteScheduler, {}),
"euler_a": (EulerAncestralDiscreteScheduler, {}),
"heun": (HeunDiscreteScheduler, {}),
"lms": (LMSDiscreteScheduler, {}),
"lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"deis": (DEISMultistepScheduler, {}),
"unipc": (UniPCMultistepScheduler, {}),
"fm_euler": (FlowMatchEulerDiscreteScheduler, {}),
}
scheduler_class, kwargs = schedulers.get(scheduler, (None, {}))
if scheduler_class is not None:
scheduler = scheduler_class.from_config(pipeline.scheduler.config, **kwargs)
else:
raise ValueError(f"Unknown scheduler: {scheduler}")
return scheduler
def load_loras(pipeline, loras, fast_generation):
for i, lora in enumerate(loras):
pipeline.load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}")
adapter_names = [f"lora_{i}" for i in range(len(loras))]
adapter_weights = [lora['weight'] for lora in loras]
if fast_generation:
hyper_lora = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors" if isinstance(pipeline, FluxPipeline) else "Hyper-SDXL-2steps-lora.safetensors"
)
hyper_weight = 0.125 if isinstance(pipeline, FluxPipeline) else 1.0
pipeline.load_lora_weights(hyper_lora, adapter_name="hyper_lora")
adapter_names.append("hyper_lora")
adapter_weights.append(hyper_weight)
pipeline.set_adapters(adapter_names, adapter_weights)
def load_xl_embeddings(pipeline, embeddings):
for embedding in embeddings:
state_dict = load_file(hf_hub_download(embedding['repo_id']))
pipeline.load_textual_inversion(state_dict['clip_g'], token=embedding['token'], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
pipeline.load_textual_inversion(state_dict["clip_l"], token=embedding['token'], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
for image in images:
if resize_mode == "resize_only":
image = image.resize((width, height))
elif resize_mode == "crop_and_resize":
image = image.crop((0, 0, width, height))
elif resize_mode == "resize_and_fill":
image = image.resize((width, height), Image.Resampling.LANCZOS)
return images
def get_controlnet_images(controlnets: List[str], control_images: List[Image.Image], height: int, width: int, resize_mode: str):
response_images = []
control_images = resize_images(control_images, height, width, resize_mode)
for controlnet, image in zip(controlnets, control_images):
if controlnet == "canny" or controlnet == "canny_xs" or controlnet == "canny_fl":
processor = Processor('canny')
elif controlnet == "depth" or controlnet == "depth_xs" or controlnet == "depth_fl":
processor = Processor('depth_midas')
elif controlnet == "pose" or controlnet == "pose_fl":
processor = Processor('openpose_full')
elif controlnet == "scribble":
processor = Processor('scribble')
else:
raise ValueError(f"Invalid Controlnet: {controlnet}")
response_images.append(processor(image, to_pil=True))
return response_images
def check_image_safety(images: List[Image.Image]):
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
has_nsfw_concepts = safety_checker(
images=[images],
clip_input=safety_checker_input.pixel_values.to("cuda"),
)
return has_nsfw_concepts[1]
def get_prompt_attention(pipeline, prompt, negative_prompt):
if isinstance(pipeline, (FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline)):
prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(pipeline, prompt)
return prompt_embeds, None, pooled_prompt_embeds, None
elif isinstance(pipeline, StableDiffusionXLPipeline):
prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = get_weighted_text_embeddings_sdxl(pipeline, prompt, negative_prompt)
return prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
else:
raise ValueError(f"Invalid pipeline type: {type(pipeline)}")
def get_photomaker_images(photomaker_images: List[Image.Image], height: int, width: int, resize_mode: str):
image_input_ids = []
image_id_embeds = []
photomaker_images = resize_images(photomaker_images, height, width, resize_mode)
for image in photomaker_images:
image_input_ids.append(img)
img = np.array(image)[:, :, ::-1]
faces = analyze_faces(face_detector, image)
if len(faces) > 0:
image_id_embeds.append(torch.from_numpy(faces[0]['embeddings']))
else:
raise ValueError("No face detected in the image")
return image_input_ids, image_id_embeds
def cleanup(pipeline, loras = None, embeddings = None):
if loras:
pipeline.disable_lora()
pipeline.unload_lora_weights()
if embeddings:
pipeline.unload_textual_inversion()
gc.collect()
torch.cuda.empty_cache()
# Gen function
def gen_img(
request: SDReq | SDImg2ImgReq | SDInpaintReq
):
pipeline_args = get_pipe(request)
pipeline = pipeline_args['pipeline']
try:
pipeline.scheduler = load_scheduler(pipeline, request.scheduler)
load_loras(pipeline, request.loras, request.fast_generation)
load_xl_embeddings(pipeline, request.embeddings)
control_images = get_controlnet_images(request.controlnet_config.controlnets, request.controlnet_config.control_images, request.height, request.width, request.resize_mode) if request.controlnet_config else None
photomaker_images, photomaker_id_embeds = get_photomaker_images(request.photomaker_images, request.height, request.width) if request.photomaker_images else (None, None)
positive_prompt_embeds, negative_prompt_embeds, positive_prompt_pooled, negative_prompt_pooled = get_prompt_attention(pipeline, request.prompt, request.negative_prompt)
# Common args
args = {
'prompt_embeds': positive_prompt_embeds,
'pooled_prompt_embeds': positive_prompt_pooled,
'height': request.height,
'width': request.width,
'num_images_per_prompt': request.num_images_per_prompt,
'num_inference_steps': request.num_inference_steps,
'guidance_scale': request.guidance_scale,
'generator': [torch.Generator(device=device).manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator(device=device).manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
}
if isinstance(pipeline, any([StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline,
StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline])):
args['clip_skip'] = request.clip_skip
args['negative_prompt_embeds'] = negative_prompt_embeds
args['negative_pooled_prompt_embeds'] = negative_prompt_pooled
if isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
args['control_mode'] = pipeline_args['control_mode']
args['control_image'] = control_images
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
if not isinstance(pipeline, FluxControlNetPipeline) and request.controlnet_config:
args['controlnet_conditioning_scale'] = request.controlnet_conditioning_scale
if isinstance(request, SDReq):
args['image'] = control_images
elif isinstance(request, (SDImg2ImgReq, SDInpaintReq)):
args['control_image'] = control_images
if request.photomaker_images and isinstance(pipeline, any([PhotoMakerStableDiffusionXLPipeline, PhotoMakerStableDiffusionXLControlNetPipeline])):
args['input_id_images'] = photomaker_images
args['input_id_embeds'] = photomaker_id_embeds
args['start_merge_step'] = 10
if isinstance(request, SDImg2ImgReq):
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
args['strength'] = request.strength
elif isinstance(request, SDInpaintReq):
args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)
args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)
args['strength'] = request.strength
images = pipeline(**args).images
if request.refiner:
images = refiner(
prompt=request.prompt,
num_inference_steps=40,
denoising_start=0.7,
image=images.images
).images
cleanup(pipeline, request.loras, request.embeddings)
return images
except Exception as e:
cleanup(pipeline, request.loras, request.embeddings)
raise ValueError(f"Error generating image: {e}") from e