aai / tabs /image_tab.py
mantrakp
Refactor image_tab.py to update custom Lora selection order
80bab12
raw
history blame
8.72 kB
# tabs/image_tab.py
import gradio as gr
from modules.events.flux_events import *
from modules.events.sdxl_events import *
from modules.helpers.common_helpers import *
from modules.helpers.flux_helpers import *
from modules.helpers.sdxl_helpers import *
from config import flux_models, sdxl_models, flux_loras
def image_tab():
with gr.Tabs():
with gr.Tab("Flux"):
flux_tab()
with gr.Tab("SDXL"):
sdxl_tab()
def flux_tab():
loras = flux_loras
with gr.Row():
with gr.Column():
with gr.Group() as image_options:
model = gr.Dropdown(label="Models", choices=flux_models, value=flux_models[0], interactive=True)
prompt = gr.Textbox(lines=5, label="Prompt")
fast_generation = gr.Checkbox(label="Fast Generation (Hyper-SD) 🧪")
with gr.Accordion("Loras", open=True): # Lora Gallery
lora_gallery = gr.Gallery(
label="Gallery",
value=[(lora['image'], lora['title']) for lora in loras],
allow_preview=False,
columns=3,
rows=3,
type="pil"
)
with gr.Group():
with gr.Column():
with gr.Row():
custom_lora = gr.Textbox(label="Custom Lora", info="Enter a Huggingface repo path")
selected_lora = gr.Textbox(label="Selected Lora", info="Choose from the gallery or enter a custom LoRA")
custom_lora_info = gr.HTML(visible=False)
add_lora = gr.Button(value="Add LoRA")
enabled_loras = gr.State(value=[])
with gr.Group():
with gr.Row():
for i in range(6): # only support max 6 loras due to inference time
with gr.Column():
with gr.Column(scale=2):
globals()[f"lora_slider_{i}"] = gr.Slider(label=f"LoRA {i+1}", minimum=0, maximum=1, step=0.01, value=0.8, visible=False, interactive=True)
with gr.Column():
globals()[f"lora_remove_{i}"] = gr.Button(value="Remove LoRA", visible=False)
with gr.Accordion("Embeddings", open=False): # Embeddings
gr.Label("To be implemented")
with gr.Accordion("Image Options", open=False): # Image Options
with gr.Tabs():
image_options = {
"img2img": "Upload Image",
"inpaint": "Upload Image",
"canny": "Upload Image",
"pose": "Upload Image",
"depth": "Upload Image",
}
for image_option, label in image_options.items():
with gr.Tab(image_option):
if not image_option in ['inpaint', 'scribble']:
globals()[f"{image_option}_image"] = gr.Image(label=label, type="pil")
elif image_option in ['inpaint', 'scribble']:
globals()[f"{image_option}_image"] = gr.ImageEditor(
label=label,
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed") if image_option == 'inpaint' else gr.Brush(),
interactive=True,
type="pil",
)
# Image Strength (Co-relates to controlnet strength, strength for img2img n inpaint)
globals()[f"{image_option}_strength"] = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=1.0, interactive=True)
resize_mode = gr.Radio(
label="Resize Mode",
choices=["crop and resize", "resize only", "resize and fill"],
value="resize and fill",
interactive=True
)
with gr.Column():
with gr.Group():
output_images = gr.Gallery(
label="Output Images",
value=[],
allow_preview=True,
type="pil",
interactive=False,
)
generate_images = gr.Button(value="Generate Images", variant="primary")
with gr.Accordion("Advance Settings", open=True):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
choices = [
"fm_euler"
],
value="fm_euler",
interactive=True
)
with gr.Row():
for column in range(2):
with gr.Column():
options = [
("Height", "image_height", 64, 1024, 64, 1024, True),
("Width", "image_width", 64, 1024, 64, 1024, True),
("Num Images Per Prompt", "image_num_images_per_prompt", 1, 4, 1, 1, True),
("Num Inference Steps", "image_num_inference_steps", 1, 100, 1, 20, True),
("Clip Skip", "image_clip_skip", 0, 2, 1, 2, False),
("Guidance Scale", "image_guidance_scale", 0, 20, 0.5, 3.5, True),
("Seed", "image_seed", 0, 100000, 1, random.randint(0, 100000), True),
]
for label, var_name, min_val, max_val, step, value, visible in options[column::2]:
globals()[var_name] = gr.Slider(label=label, minimum=min_val, maximum=max_val, step=step, value=value, visible=visible, interactive=True)
with gr.Row():
refiner = gr.Checkbox(
label="Refiner 🧪",
value=False,
)
vae = gr.Checkbox(
label="VAE",
value=True,
)
# Events
# Base Options
fast_generation.change(update_fast_generation, [fast_generation], [image_guidance_scale, image_num_inference_steps]) # Fast Generation # type: ignore
# Lora Gallery
lora_gallery.select(selected_lora_from_gallery, None, selected_lora)
custom_lora.change(update_selected_lora, custom_lora, [selected_lora, custom_lora])
add_lora.click(add_to_enabled_loras, [selected_lora, enabled_loras], [selected_lora, custom_lora_info, enabled_loras])
enabled_loras.change(update_lora_sliders, enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, lora_remove_0, lora_remove_1, lora_remove_2, lora_remove_3, lora_remove_4, lora_remove_5]) # type: ignore
for i in range(6):
globals()[f"lora_remove_{i}"].click(
lambda enabled_loras, index=i: remove_from_enabled_loras(enabled_loras, index),
[enabled_loras],
[enabled_loras]
)
# Generate Image
generate_images.click(
generate_image, # type: ignore
[
model, prompt, fast_generation, enabled_loras,
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore
img2img_image, inpaint_image, canny_image, pose_image, depth_image, # type: ignore
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, # type: ignore
resize_mode,
scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore
image_num_inference_steps, image_guidance_scale, image_seed, # type: ignore
refiner, vae
],
[output_images]
)
def sdxl_tab():
gr.Label("To be implemented")