mantrakp
Refactor ControlNetReq class to remove unused import and add controlnets, control_images, and controlnet_conditioning_scale attributes
07dc8e6
import gc | |
from typing import List, Optional, Dict, Any | |
import torch | |
from pydantic import BaseModel | |
from PIL import Image | |
from diffusers.schedulers import * | |
from controlnet_aux.processor import Processor | |
class ControlNetReq(BaseModel): | |
controlnets: List[str] # ["canny", "tile", "depth"] | |
control_images: List[Image.Image] | |
controlnet_conditioning_scale: List[float] | |
class Config: | |
arbitrary_types_allowed=True | |
class BaseReq(BaseModel): | |
model: str = "" | |
prompt: str = "" | |
fast_generation: Optional[bool] = True | |
loras: Optional[list] = [] | |
resize_mode: Optional[str] = "resize_and_fill" # resize_only, crop_and_resize, resize_and_fill | |
scheduler: Optional[str] = "euler_fl" | |
height: int = 1024 | |
width: int = 1024 | |
num_images_per_prompt: int = 1 | |
num_inference_steps: int = 8 | |
guidance_scale: float = 3.5 | |
seed: Optional[int] = 0 | |
refiner: bool = False | |
vae: bool = True | |
controlnet_config: Optional[ControlNetReq] = None | |
custom_addons: Optional[Dict[Any, Any]] = None | |
class Config: | |
arbitrary_types_allowed=True | |
class BaseImg2ImgReq(BaseReq): | |
image: Image.Image | |
strength: float = 1.0 | |
class Config: | |
arbitrary_types_allowed=True | |
class BaseInpaintReq(BaseImg2ImgReq): | |
mask_image: Image.Image | |
class Config: | |
arbitrary_types_allowed=True | |
def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str): | |
for image in images: | |
if resize_mode == "resize_only": | |
image = image.resize((width, height)) | |
elif resize_mode == "crop_and_resize": | |
image = image.crop((0, 0, width, height)) | |
elif resize_mode == "resize_and_fill": | |
image = image.resize((width, height), Image.Resampling.LANCZOS) | |
return images | |
def get_controlnet_images(controlnet_config: ControlNetReq, height: int, width: int, resize_mode: str): | |
response_images = [] | |
control_images = resize_images(controlnet_config.control_images, height, width, resize_mode) | |
for controlnet, image in zip(controlnet_config.controlnets, control_images): | |
if controlnet == "canny": | |
processor = Processor('canny') | |
elif controlnet == "depth": | |
processor = Processor('depth_midas') | |
elif controlnet == "pose": | |
processor = Processor('openpose_full') | |
else: | |
raise ValueError(f"Invalid Controlnet: {controlnet}") | |
response_images.append(processor(image, to_pil=True)) | |
return response_images | |
def cleanup(pipeline, loras = None): | |
if loras: | |
pipeline.unload_lora_weights() | |
gc.collect() | |
torch.cuda.empty_cache() | |