LocationFinder / src /process_docs.py
mattupson's picture
chg: Remove grants with PERSON ents
59135d9 unverified
import csv
import random
import spacy
import srsly
import tqdm
import yaml
params = yaml.safe_load(open("params.yaml"))
nlp = spacy.load("en_core_web_trf")
INPUT_FILE = "data/processed/wellcome_grant_descriptions.csv"
OUTPUT_FILE = "data/processed/entities.jsonl"
INCLUDE_ENTS = {"GPE", "LOC"}
EXCLUDE_ENTS = {"PERSON"}
def process_documents(input_file: str, output_file: str):
data = []
print(f"Reading data from {input_file}...")
with open(input_file, "r") as f:
reader = csv.reader(f)
next(reader)
for row in reader:
data.append(row[0])
print(f"Processing {len(data)} documents...")
entities = []
for doc_ in tqdm.tqdm(data):
doc = nlp(doc_)
# Get a list of found entities
ents = [
{
"text": ent.text,
"label": ent.label_,
"start": ent.start_char,
"end": ent.end_char,
}
for ent in doc.ents
]
if ents:
found_ents = set([ent["label"] for ent in ents])
if found_ents.intersection(INCLUDE_ENTS) and not found_ents.intersection(
EXCLUDE_ENTS
):
entities.append(
{
"text": doc.text,
"ents": ents,
}
)
print(f"Randomly selecting {params['max_docs']} documents...")
random.shuffle(entities)
entities = entities[: params["max_docs"]]
print(f"Writing {len(entities)} documents to {output_file}...")
srsly.write_jsonl(output_file, entities)
if __name__ == "__main__":
process_documents(INPUT_FILE, OUTPUT_FILE)