Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
| # LICENSE is in incl_licenses directory. | |
| # Copyright 2023 Haotian Liu | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # This file is modified from https://github.com/haotian-liu/LLaVA/ | |
| import os | |
| from collections import defaultdict | |
| from typing import Dict, List, Optional, Tuple, Union | |
| import torch | |
| from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel | |
| from transformers.modeling_outputs import CausalLMOutputWithPast | |
| from llava.model.loss import soft_cross_entropy | |
| from llava.model.utils.packing import set_seqlens_in_batch | |
| from llava.train.sequence_parallel.globals import get_pg_manager | |
| from llava.utils.logging import logger | |
| from ...train.utils import calculate_loss_weight | |
| from ..configuration_llava import LlavaConfig | |
| from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel | |
| class LlavaLlamaConfig(LlavaConfig): | |
| model_type = "llava_llama" | |
| # FIXME we will follow the convention to add a new class for CausalLM in the future | |
| class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel): | |
| config_class = LlavaLlamaConfig | |
| main_input_name = "input_embeds" | |
| supports_gradient_checkpointing = True | |
| _supports_flash_attn_2 = True | |
| def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None: | |
| super().__init__(config) | |
| self.init_vlm(config=config, *args, **kwargs) | |
| def from_pretrained( | |
| cls, | |
| pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
| *model_args, | |
| config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| ignore_mismatched_sizes: bool = False, | |
| force_download: bool = False, | |
| local_files_only: bool = False, | |
| token: Optional[Union[str, bool]] = None, | |
| revision: str = "main", | |
| use_safetensors: bool = None, | |
| **kwargs, | |
| ): | |
| if hasattr(cls, "load_pretrained"): | |
| return cls.load_pretrained( | |
| pretrained_model_name_or_path, | |
| *model_args, | |
| config=config, | |
| cache_dir=cache_dir, | |
| ignore_mismatched_sizes=ignore_mismatched_sizes, | |
| force_download=force_download, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| use_safetensors=use_safetensors, | |
| **kwargs, | |
| ) | |
| return super(LlavaLlamaModel).from_pretrained( | |
| pretrained_model_name_or_path, | |
| *model_args, | |
| config=config, | |
| cache_dir=cache_dir, | |
| ignore_mismatched_sizes=ignore_mismatched_sizes, | |
| force_download=force_download, | |
| local_files_only=local_files_only, | |
| token=token, | |
| revision=revision, | |
| use_safetensors=use_safetensors, | |
| **kwargs, | |
| ) | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| media: Optional[Dict[str, List[torch.Tensor]]] = None, | |
| images: Optional[torch.FloatTensor] = None, | |
| media_config: Optional[List] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| media_meta: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| packing: bool = True, | |
| force_packing: bool = False, | |
| seqlens_in_batch: Optional[torch.LongTensor] = None, | |
| dpo_forward: bool = False, | |
| **kwargs, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| self.freezed_module_patch() | |
| if images is not None: | |
| if media is not None: | |
| raise ValueError("Both 'media' and 'images' are provided. Please provide only one.") | |
| logger.warning("The 'images' argument is deprecated. Please use 'media' instead.") | |
| media = {"image": images} | |
| if media_config is None: | |
| media_config = defaultdict(dict) | |
| if inputs_embeds is None: | |
| inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask,media_meta) | |
| if force_packing or (packing and self.training and not dpo_forward): | |
| if seqlens_in_batch is None: | |
| seqlens_in_batch = torch.sum(attention_mask, dim=1) | |
| set_seqlens_in_batch(seqlens_in_batch) | |
| (inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data( | |
| inputs_embeds, attention_mask, position_ids, labels | |
| ) | |
| outputs = self.llm( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| labels=labels, | |
| **kwargs, | |
| ) | |
| if self.training and getattr(self.config, "time_token_ids", []): | |
| outputs.loss = soft_cross_entropy( | |
| outputs.logits, | |
| labels, | |
| soft_tokens=self.config.time_token_ids, | |
| std=self.config.soft_ce_std, | |
| ) | |
| # Loss rescale for SP | |
| if get_pg_manager() is not None: | |
| loss_weight = calculate_loss_weight(labels) | |
| outputs.loss = outputs.loss * loss_weight | |
| if dpo_forward: | |
| return outputs.logits, labels | |
| return outputs | |
| AutoConfig.register("llava_llama", LlavaLlamaConfig) | |
| AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel) | |