Spaces:
Runtime error
Runtime error
Kikirilkov
commited on
Commit
Β·
2093772
1
Parent(s):
a2b5b44
Upload 2 files
Browse files
TTS/vocoder/models/deepmind_version.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from utils.display import *
|
5 |
+
from utils.dsp import *
|
6 |
+
|
7 |
+
|
8 |
+
class WaveRNN(nn.Module) :
|
9 |
+
def __init__(self, hidden_size=896, quantisation=256) :
|
10 |
+
super(WaveRNN, self).__init__()
|
11 |
+
|
12 |
+
self.hidden_size = hidden_size
|
13 |
+
self.split_size = hidden_size // 2
|
14 |
+
|
15 |
+
# The main matmul
|
16 |
+
self.R = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
17 |
+
|
18 |
+
# Output fc layers
|
19 |
+
self.O1 = nn.Linear(self.split_size, self.split_size)
|
20 |
+
self.O2 = nn.Linear(self.split_size, quantisation)
|
21 |
+
self.O3 = nn.Linear(self.split_size, self.split_size)
|
22 |
+
self.O4 = nn.Linear(self.split_size, quantisation)
|
23 |
+
|
24 |
+
# Input fc layers
|
25 |
+
self.I_coarse = nn.Linear(2, 3 * self.split_size, bias=False)
|
26 |
+
self.I_fine = nn.Linear(3, 3 * self.split_size, bias=False)
|
27 |
+
|
28 |
+
# biases for the gates
|
29 |
+
self.bias_u = nn.Parameter(torch.zeros(self.hidden_size))
|
30 |
+
self.bias_r = nn.Parameter(torch.zeros(self.hidden_size))
|
31 |
+
self.bias_e = nn.Parameter(torch.zeros(self.hidden_size))
|
32 |
+
|
33 |
+
# display num params
|
34 |
+
self.num_params()
|
35 |
+
|
36 |
+
|
37 |
+
def forward(self, prev_y, prev_hidden, current_coarse) :
|
38 |
+
|
39 |
+
# Main matmul - the projection is split 3 ways
|
40 |
+
R_hidden = self.R(prev_hidden)
|
41 |
+
R_u, R_r, R_e, = torch.split(R_hidden, self.hidden_size, dim=1)
|
42 |
+
|
43 |
+
# Project the prev input
|
44 |
+
coarse_input_proj = self.I_coarse(prev_y)
|
45 |
+
I_coarse_u, I_coarse_r, I_coarse_e = \
|
46 |
+
torch.split(coarse_input_proj, self.split_size, dim=1)
|
47 |
+
|
48 |
+
# Project the prev input and current coarse sample
|
49 |
+
fine_input = torch.cat([prev_y, current_coarse], dim=1)
|
50 |
+
fine_input_proj = self.I_fine(fine_input)
|
51 |
+
I_fine_u, I_fine_r, I_fine_e = \
|
52 |
+
torch.split(fine_input_proj, self.split_size, dim=1)
|
53 |
+
|
54 |
+
# concatenate for the gates
|
55 |
+
I_u = torch.cat([I_coarse_u, I_fine_u], dim=1)
|
56 |
+
I_r = torch.cat([I_coarse_r, I_fine_r], dim=1)
|
57 |
+
I_e = torch.cat([I_coarse_e, I_fine_e], dim=1)
|
58 |
+
|
59 |
+
# Compute all gates for coarse and fine
|
60 |
+
u = F.sigmoid(R_u + I_u + self.bias_u)
|
61 |
+
r = F.sigmoid(R_r + I_r + self.bias_r)
|
62 |
+
e = F.tanh(r * R_e + I_e + self.bias_e)
|
63 |
+
hidden = u * prev_hidden + (1. - u) * e
|
64 |
+
|
65 |
+
# Split the hidden state
|
66 |
+
hidden_coarse, hidden_fine = torch.split(hidden, self.split_size, dim=1)
|
67 |
+
|
68 |
+
# Compute outputs
|
69 |
+
out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
|
70 |
+
out_fine = self.O4(F.relu(self.O3(hidden_fine)))
|
71 |
+
|
72 |
+
return out_coarse, out_fine, hidden
|
73 |
+
|
74 |
+
|
75 |
+
def generate(self, seq_len):
|
76 |
+
with torch.no_grad():
|
77 |
+
# First split up the biases for the gates
|
78 |
+
b_coarse_u, b_fine_u = torch.split(self.bias_u, self.split_size)
|
79 |
+
b_coarse_r, b_fine_r = torch.split(self.bias_r, self.split_size)
|
80 |
+
b_coarse_e, b_fine_e = torch.split(self.bias_e, self.split_size)
|
81 |
+
|
82 |
+
# Lists for the two output seqs
|
83 |
+
c_outputs, f_outputs = [], []
|
84 |
+
|
85 |
+
# Some initial inputs
|
86 |
+
out_coarse = torch.LongTensor([0]).cuda()
|
87 |
+
out_fine = torch.LongTensor([0]).cuda()
|
88 |
+
|
89 |
+
# We'll meed a hidden state
|
90 |
+
hidden = self.init_hidden()
|
91 |
+
|
92 |
+
# Need a clock for display
|
93 |
+
start = time.time()
|
94 |
+
|
95 |
+
# Loop for generation
|
96 |
+
for i in range(seq_len) :
|
97 |
+
|
98 |
+
# Split into two hidden states
|
99 |
+
hidden_coarse, hidden_fine = \
|
100 |
+
torch.split(hidden, self.split_size, dim=1)
|
101 |
+
|
102 |
+
# Scale and concat previous predictions
|
103 |
+
out_coarse = out_coarse.unsqueeze(0).float() / 127.5 - 1.
|
104 |
+
out_fine = out_fine.unsqueeze(0).float() / 127.5 - 1.
|
105 |
+
prev_outputs = torch.cat([out_coarse, out_fine], dim=1)
|
106 |
+
|
107 |
+
# Project input
|
108 |
+
coarse_input_proj = self.I_coarse(prev_outputs)
|
109 |
+
I_coarse_u, I_coarse_r, I_coarse_e = \
|
110 |
+
torch.split(coarse_input_proj, self.split_size, dim=1)
|
111 |
+
|
112 |
+
# Project hidden state and split 6 ways
|
113 |
+
R_hidden = self.R(hidden)
|
114 |
+
R_coarse_u , R_fine_u, \
|
115 |
+
R_coarse_r, R_fine_r, \
|
116 |
+
R_coarse_e, R_fine_e = torch.split(R_hidden, self.split_size, dim=1)
|
117 |
+
|
118 |
+
# Compute the coarse gates
|
119 |
+
u = F.sigmoid(R_coarse_u + I_coarse_u + b_coarse_u)
|
120 |
+
r = F.sigmoid(R_coarse_r + I_coarse_r + b_coarse_r)
|
121 |
+
e = F.tanh(r * R_coarse_e + I_coarse_e + b_coarse_e)
|
122 |
+
hidden_coarse = u * hidden_coarse + (1. - u) * e
|
123 |
+
|
124 |
+
# Compute the coarse output
|
125 |
+
out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
|
126 |
+
posterior = F.softmax(out_coarse, dim=1)
|
127 |
+
distrib = torch.distributions.Categorical(posterior)
|
128 |
+
out_coarse = distrib.sample()
|
129 |
+
c_outputs.append(out_coarse)
|
130 |
+
|
131 |
+
# Project the [prev outputs and predicted coarse sample]
|
132 |
+
coarse_pred = out_coarse.float() / 127.5 - 1.
|
133 |
+
fine_input = torch.cat([prev_outputs, coarse_pred.unsqueeze(0)], dim=1)
|
134 |
+
fine_input_proj = self.I_fine(fine_input)
|
135 |
+
I_fine_u, I_fine_r, I_fine_e = \
|
136 |
+
torch.split(fine_input_proj, self.split_size, dim=1)
|
137 |
+
|
138 |
+
# Compute the fine gates
|
139 |
+
u = F.sigmoid(R_fine_u + I_fine_u + b_fine_u)
|
140 |
+
r = F.sigmoid(R_fine_r + I_fine_r + b_fine_r)
|
141 |
+
e = F.tanh(r * R_fine_e + I_fine_e + b_fine_e)
|
142 |
+
hidden_fine = u * hidden_fine + (1. - u) * e
|
143 |
+
|
144 |
+
# Compute the fine output
|
145 |
+
out_fine = self.O4(F.relu(self.O3(hidden_fine)))
|
146 |
+
posterior = F.softmax(out_fine, dim=1)
|
147 |
+
distrib = torch.distributions.Categorical(posterior)
|
148 |
+
out_fine = distrib.sample()
|
149 |
+
f_outputs.append(out_fine)
|
150 |
+
|
151 |
+
# Put the hidden state back together
|
152 |
+
hidden = torch.cat([hidden_coarse, hidden_fine], dim=1)
|
153 |
+
|
154 |
+
# Display progress
|
155 |
+
speed = (i + 1) / (time.time() - start)
|
156 |
+
stream('Gen: %i/%i -- Speed: %i', (i + 1, seq_len, speed))
|
157 |
+
|
158 |
+
coarse = torch.stack(c_outputs).squeeze(1).cpu().data.numpy()
|
159 |
+
fine = torch.stack(f_outputs).squeeze(1).cpu().data.numpy()
|
160 |
+
output = combine_signal(coarse, fine)
|
161 |
+
|
162 |
+
return output, coarse, fine
|
163 |
+
|
164 |
+
def init_hidden(self, batch_size=1) :
|
165 |
+
return torch.zeros(batch_size, self.hidden_size).cuda()
|
166 |
+
|
167 |
+
def num_params(self) :
|
168 |
+
parameters = filter(lambda p: p.requires_grad, self.parameters())
|
169 |
+
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
|
170 |
+
print('Trainable Parameters: %.3f million' % parameters)
|
TTS/vocoder/models/fatchord_version.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from vocoder.distribution import sample_from_discretized_mix_logistic
|
5 |
+
from vocoder.display import *
|
6 |
+
from vocoder.audio import *
|
7 |
+
|
8 |
+
|
9 |
+
class ResBlock(nn.Module):
|
10 |
+
def __init__(self, dims):
|
11 |
+
super().__init__()
|
12 |
+
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
|
13 |
+
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
|
14 |
+
self.batch_norm1 = nn.BatchNorm1d(dims)
|
15 |
+
self.batch_norm2 = nn.BatchNorm1d(dims)
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
residual = x
|
19 |
+
x = self.conv1(x)
|
20 |
+
x = self.batch_norm1(x)
|
21 |
+
x = F.relu(x)
|
22 |
+
x = self.conv2(x)
|
23 |
+
x = self.batch_norm2(x)
|
24 |
+
return x + residual
|
25 |
+
|
26 |
+
|
27 |
+
class MelResNet(nn.Module):
|
28 |
+
def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
|
29 |
+
super().__init__()
|
30 |
+
k_size = pad * 2 + 1
|
31 |
+
self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
|
32 |
+
self.batch_norm = nn.BatchNorm1d(compute_dims)
|
33 |
+
self.layers = nn.ModuleList()
|
34 |
+
for i in range(res_blocks):
|
35 |
+
self.layers.append(ResBlock(compute_dims))
|
36 |
+
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
x = self.conv_in(x)
|
40 |
+
x = self.batch_norm(x)
|
41 |
+
x = F.relu(x)
|
42 |
+
for f in self.layers: x = f(x)
|
43 |
+
x = self.conv_out(x)
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
class Stretch2d(nn.Module):
|
48 |
+
def __init__(self, x_scale, y_scale):
|
49 |
+
super().__init__()
|
50 |
+
self.x_scale = x_scale
|
51 |
+
self.y_scale = y_scale
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
b, c, h, w = x.size()
|
55 |
+
x = x.unsqueeze(-1).unsqueeze(3)
|
56 |
+
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
|
57 |
+
return x.view(b, c, h * self.y_scale, w * self.x_scale)
|
58 |
+
|
59 |
+
|
60 |
+
class UpsampleNetwork(nn.Module):
|
61 |
+
def __init__(self, feat_dims, upsample_scales, compute_dims,
|
62 |
+
res_blocks, res_out_dims, pad):
|
63 |
+
super().__init__()
|
64 |
+
total_scale = np.cumproduct(upsample_scales)[-1]
|
65 |
+
self.indent = pad * total_scale
|
66 |
+
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
|
67 |
+
self.resnet_stretch = Stretch2d(total_scale, 1)
|
68 |
+
self.up_layers = nn.ModuleList()
|
69 |
+
for scale in upsample_scales:
|
70 |
+
k_size = (1, scale * 2 + 1)
|
71 |
+
padding = (0, scale)
|
72 |
+
stretch = Stretch2d(scale, 1)
|
73 |
+
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
|
74 |
+
conv.weight.data.fill_(1. / k_size[1])
|
75 |
+
self.up_layers.append(stretch)
|
76 |
+
self.up_layers.append(conv)
|
77 |
+
|
78 |
+
def forward(self, m):
|
79 |
+
aux = self.resnet(m).unsqueeze(1)
|
80 |
+
aux = self.resnet_stretch(aux)
|
81 |
+
aux = aux.squeeze(1)
|
82 |
+
m = m.unsqueeze(1)
|
83 |
+
for f in self.up_layers: m = f(m)
|
84 |
+
m = m.squeeze(1)[:, :, self.indent:-self.indent]
|
85 |
+
return m.transpose(1, 2), aux.transpose(1, 2)
|
86 |
+
|
87 |
+
|
88 |
+
class WaveRNN(nn.Module):
|
89 |
+
def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors,
|
90 |
+
feat_dims, compute_dims, res_out_dims, res_blocks,
|
91 |
+
hop_length, sample_rate, mode='RAW'):
|
92 |
+
super().__init__()
|
93 |
+
self.mode = mode
|
94 |
+
self.pad = pad
|
95 |
+
if self.mode == 'RAW' :
|
96 |
+
self.n_classes = 2 ** bits
|
97 |
+
elif self.mode == 'MOL' :
|
98 |
+
self.n_classes = 30
|
99 |
+
else :
|
100 |
+
RuntimeError("Unknown model mode value - ", self.mode)
|
101 |
+
|
102 |
+
self.rnn_dims = rnn_dims
|
103 |
+
self.aux_dims = res_out_dims // 4
|
104 |
+
self.hop_length = hop_length
|
105 |
+
self.sample_rate = sample_rate
|
106 |
+
|
107 |
+
self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad)
|
108 |
+
self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims)
|
109 |
+
self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
|
110 |
+
self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True)
|
111 |
+
self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
|
112 |
+
self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
|
113 |
+
self.fc3 = nn.Linear(fc_dims, self.n_classes)
|
114 |
+
|
115 |
+
self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False)
|
116 |
+
self.num_params()
|
117 |
+
|
118 |
+
def forward(self, x, mels):
|
119 |
+
self.step += 1
|
120 |
+
bsize = x.size(0)
|
121 |
+
h1 = torch.zeros(1, bsize, self.rnn_dims).cuda()
|
122 |
+
h2 = torch.zeros(1, bsize, self.rnn_dims).cuda()
|
123 |
+
mels, aux = self.upsample(mels)
|
124 |
+
|
125 |
+
aux_idx = [self.aux_dims * i for i in range(5)]
|
126 |
+
a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
|
127 |
+
a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
|
128 |
+
a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
|
129 |
+
a4 = aux[:, :, aux_idx[3]:aux_idx[4]]
|
130 |
+
|
131 |
+
x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
|
132 |
+
x = self.I(x)
|
133 |
+
res = x
|
134 |
+
x, _ = self.rnn1(x, h1)
|
135 |
+
|
136 |
+
x = x + res
|
137 |
+
res = x
|
138 |
+
x = torch.cat([x, a2], dim=2)
|
139 |
+
x, _ = self.rnn2(x, h2)
|
140 |
+
|
141 |
+
x = x + res
|
142 |
+
x = torch.cat([x, a3], dim=2)
|
143 |
+
x = F.relu(self.fc1(x))
|
144 |
+
|
145 |
+
x = torch.cat([x, a4], dim=2)
|
146 |
+
x = F.relu(self.fc2(x))
|
147 |
+
return self.fc3(x)
|
148 |
+
|
149 |
+
def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None):
|
150 |
+
mu_law = mu_law if self.mode == 'RAW' else False
|
151 |
+
progress_callback = progress_callback or self.gen_display
|
152 |
+
|
153 |
+
self.eval()
|
154 |
+
output = []
|
155 |
+
start = time.time()
|
156 |
+
rnn1 = self.get_gru_cell(self.rnn1)
|
157 |
+
rnn2 = self.get_gru_cell(self.rnn2)
|
158 |
+
|
159 |
+
with torch.no_grad():
|
160 |
+
mels = mels.cuda()
|
161 |
+
wave_len = (mels.size(-1) - 1) * self.hop_length
|
162 |
+
mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both')
|
163 |
+
mels, aux = self.upsample(mels.transpose(1, 2))
|
164 |
+
|
165 |
+
if batched:
|
166 |
+
mels = self.fold_with_overlap(mels, target, overlap)
|
167 |
+
aux = self.fold_with_overlap(aux, target, overlap)
|
168 |
+
|
169 |
+
b_size, seq_len, _ = mels.size()
|
170 |
+
|
171 |
+
h1 = torch.zeros(b_size, self.rnn_dims).cuda()
|
172 |
+
h2 = torch.zeros(b_size, self.rnn_dims).cuda()
|
173 |
+
x = torch.zeros(b_size, 1).cuda()
|
174 |
+
|
175 |
+
d = self.aux_dims
|
176 |
+
aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]
|
177 |
+
|
178 |
+
for i in range(seq_len):
|
179 |
+
|
180 |
+
m_t = mels[:, i, :]
|
181 |
+
|
182 |
+
a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
|
183 |
+
|
184 |
+
x = torch.cat([x, m_t, a1_t], dim=1)
|
185 |
+
x = self.I(x)
|
186 |
+
h1 = rnn1(x, h1)
|
187 |
+
|
188 |
+
x = x + h1
|
189 |
+
inp = torch.cat([x, a2_t], dim=1)
|
190 |
+
h2 = rnn2(inp, h2)
|
191 |
+
|
192 |
+
x = x + h2
|
193 |
+
x = torch.cat([x, a3_t], dim=1)
|
194 |
+
x = F.relu(self.fc1(x))
|
195 |
+
|
196 |
+
x = torch.cat([x, a4_t], dim=1)
|
197 |
+
x = F.relu(self.fc2(x))
|
198 |
+
|
199 |
+
logits = self.fc3(x)
|
200 |
+
|
201 |
+
if self.mode == 'MOL':
|
202 |
+
sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2))
|
203 |
+
output.append(sample.view(-1))
|
204 |
+
# x = torch.FloatTensor([[sample]]).cuda()
|
205 |
+
x = sample.transpose(0, 1).cuda()
|
206 |
+
|
207 |
+
elif self.mode == 'RAW' :
|
208 |
+
posterior = F.softmax(logits, dim=1)
|
209 |
+
distrib = torch.distributions.Categorical(posterior)
|
210 |
+
|
211 |
+
sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1.
|
212 |
+
output.append(sample)
|
213 |
+
x = sample.unsqueeze(-1)
|
214 |
+
else:
|
215 |
+
raise RuntimeError("Unknown model mode value - ", self.mode)
|
216 |
+
|
217 |
+
if i % 100 == 0:
|
218 |
+
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
|
219 |
+
progress_callback(i, seq_len, b_size, gen_rate)
|
220 |
+
|
221 |
+
output = torch.stack(output).transpose(0, 1)
|
222 |
+
output = output.cpu().numpy()
|
223 |
+
output = output.astype(np.float64)
|
224 |
+
|
225 |
+
if batched:
|
226 |
+
output = self.xfade_and_unfold(output, target, overlap)
|
227 |
+
else:
|
228 |
+
output = output[0]
|
229 |
+
|
230 |
+
if mu_law:
|
231 |
+
output = decode_mu_law(output, self.n_classes, False)
|
232 |
+
if hp.apply_preemphasis:
|
233 |
+
output = de_emphasis(output)
|
234 |
+
|
235 |
+
# Fade-out at the end to avoid signal cutting out suddenly
|
236 |
+
fade_out = np.linspace(1, 0, 20 * self.hop_length)
|
237 |
+
output = output[:wave_len]
|
238 |
+
output[-20 * self.hop_length:] *= fade_out
|
239 |
+
|
240 |
+
self.train()
|
241 |
+
|
242 |
+
return output
|
243 |
+
|
244 |
+
|
245 |
+
def gen_display(self, i, seq_len, b_size, gen_rate):
|
246 |
+
pbar = progbar(i, seq_len)
|
247 |
+
msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
|
248 |
+
stream(msg)
|
249 |
+
|
250 |
+
def get_gru_cell(self, gru):
|
251 |
+
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
|
252 |
+
gru_cell.weight_hh.data = gru.weight_hh_l0.data
|
253 |
+
gru_cell.weight_ih.data = gru.weight_ih_l0.data
|
254 |
+
gru_cell.bias_hh.data = gru.bias_hh_l0.data
|
255 |
+
gru_cell.bias_ih.data = gru.bias_ih_l0.data
|
256 |
+
return gru_cell
|
257 |
+
|
258 |
+
def pad_tensor(self, x, pad, side='both'):
|
259 |
+
# NB - this is just a quick method i need right now
|
260 |
+
# i.e., it won't generalise to other shapes/dims
|
261 |
+
b, t, c = x.size()
|
262 |
+
total = t + 2 * pad if side == 'both' else t + pad
|
263 |
+
padded = torch.zeros(b, total, c).cuda()
|
264 |
+
if side == 'before' or side == 'both':
|
265 |
+
padded[:, pad:pad + t, :] = x
|
266 |
+
elif side == 'after':
|
267 |
+
padded[:, :t, :] = x
|
268 |
+
return padded
|
269 |
+
|
270 |
+
def fold_with_overlap(self, x, target, overlap):
|
271 |
+
|
272 |
+
''' Fold the tensor with overlap for quick batched inference.
|
273 |
+
Overlap will be used for crossfading in xfade_and_unfold()
|
274 |
+
|
275 |
+
Args:
|
276 |
+
x (tensor) : Upsampled conditioning features.
|
277 |
+
shape=(1, timesteps, features)
|
278 |
+
target (int) : Target timesteps for each index of batch
|
279 |
+
overlap (int) : Timesteps for both xfade and rnn warmup
|
280 |
+
|
281 |
+
Return:
|
282 |
+
(tensor) : shape=(num_folds, target + 2 * overlap, features)
|
283 |
+
|
284 |
+
Details:
|
285 |
+
x = [[h1, h2, ... hn]]
|
286 |
+
|
287 |
+
Where each h is a vector of conditioning features
|
288 |
+
|
289 |
+
Eg: target=2, overlap=1 with x.size(1)=10
|
290 |
+
|
291 |
+
folded = [[h1, h2, h3, h4],
|
292 |
+
[h4, h5, h6, h7],
|
293 |
+
[h7, h8, h9, h10]]
|
294 |
+
'''
|
295 |
+
|
296 |
+
_, total_len, features = x.size()
|
297 |
+
|
298 |
+
# Calculate variables needed
|
299 |
+
num_folds = (total_len - overlap) // (target + overlap)
|
300 |
+
extended_len = num_folds * (overlap + target) + overlap
|
301 |
+
remaining = total_len - extended_len
|
302 |
+
|
303 |
+
# Pad if some time steps poking out
|
304 |
+
if remaining != 0:
|
305 |
+
num_folds += 1
|
306 |
+
padding = target + 2 * overlap - remaining
|
307 |
+
x = self.pad_tensor(x, padding, side='after')
|
308 |
+
|
309 |
+
folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda()
|
310 |
+
|
311 |
+
# Get the values for the folded tensor
|
312 |
+
for i in range(num_folds):
|
313 |
+
start = i * (target + overlap)
|
314 |
+
end = start + target + 2 * overlap
|
315 |
+
folded[i] = x[:, start:end, :]
|
316 |
+
|
317 |
+
return folded
|
318 |
+
|
319 |
+
def xfade_and_unfold(self, y, target, overlap):
|
320 |
+
|
321 |
+
''' Applies a crossfade and unfolds into a 1d array.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
y (ndarry) : Batched sequences of audio samples
|
325 |
+
shape=(num_folds, target + 2 * overlap)
|
326 |
+
dtype=np.float64
|
327 |
+
overlap (int) : Timesteps for both xfade and rnn warmup
|
328 |
+
|
329 |
+
Return:
|
330 |
+
(ndarry) : audio samples in a 1d array
|
331 |
+
shape=(total_len)
|
332 |
+
dtype=np.float64
|
333 |
+
|
334 |
+
Details:
|
335 |
+
y = [[seq1],
|
336 |
+
[seq2],
|
337 |
+
[seq3]]
|
338 |
+
|
339 |
+
Apply a gain envelope at both ends of the sequences
|
340 |
+
|
341 |
+
y = [[seq1_in, seq1_target, seq1_out],
|
342 |
+
[seq2_in, seq2_target, seq2_out],
|
343 |
+
[seq3_in, seq3_target, seq3_out]]
|
344 |
+
|
345 |
+
Stagger and add up the groups of samples:
|
346 |
+
|
347 |
+
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
|
348 |
+
|
349 |
+
'''
|
350 |
+
|
351 |
+
num_folds, length = y.shape
|
352 |
+
target = length - 2 * overlap
|
353 |
+
total_len = num_folds * (target + overlap) + overlap
|
354 |
+
|
355 |
+
# Need some silence for the rnn warmup
|
356 |
+
silence_len = overlap // 2
|
357 |
+
fade_len = overlap - silence_len
|
358 |
+
silence = np.zeros((silence_len), dtype=np.float64)
|
359 |
+
|
360 |
+
# Equal power crossfade
|
361 |
+
t = np.linspace(-1, 1, fade_len, dtype=np.float64)
|
362 |
+
fade_in = np.sqrt(0.5 * (1 + t))
|
363 |
+
fade_out = np.sqrt(0.5 * (1 - t))
|
364 |
+
|
365 |
+
# Concat the silence to the fades
|
366 |
+
fade_in = np.concatenate([silence, fade_in])
|
367 |
+
fade_out = np.concatenate([fade_out, silence])
|
368 |
+
|
369 |
+
# Apply the gain to the overlap samples
|
370 |
+
y[:, :overlap] *= fade_in
|
371 |
+
y[:, -overlap:] *= fade_out
|
372 |
+
|
373 |
+
unfolded = np.zeros((total_len), dtype=np.float64)
|
374 |
+
|
375 |
+
# Loop to add up all the samples
|
376 |
+
for i in range(num_folds):
|
377 |
+
start = i * (target + overlap)
|
378 |
+
end = start + target + 2 * overlap
|
379 |
+
unfolded[start:end] += y[i]
|
380 |
+
|
381 |
+
return unfolded
|
382 |
+
|
383 |
+
def get_step(self) :
|
384 |
+
return self.step.data.item()
|
385 |
+
|
386 |
+
def checkpoint(self, model_dir, optimizer) :
|
387 |
+
k_steps = self.get_step() // 1000
|
388 |
+
self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer)
|
389 |
+
|
390 |
+
def log(self, path, msg) :
|
391 |
+
with open(path, 'a') as f:
|
392 |
+
print(msg, file=f)
|
393 |
+
|
394 |
+
def load(self, path, optimizer) :
|
395 |
+
checkpoint = torch.load(path)
|
396 |
+
if "optimizer_state" in checkpoint:
|
397 |
+
self.load_state_dict(checkpoint["model_state"])
|
398 |
+
optimizer.load_state_dict(checkpoint["optimizer_state"])
|
399 |
+
else:
|
400 |
+
# Backwards compatibility
|
401 |
+
self.load_state_dict(checkpoint)
|
402 |
+
|
403 |
+
def save(self, path, optimizer) :
|
404 |
+
torch.save({
|
405 |
+
"model_state": self.state_dict(),
|
406 |
+
"optimizer_state": optimizer.state_dict(),
|
407 |
+
}, path)
|
408 |
+
|
409 |
+
def num_params(self, print_out=True):
|
410 |
+
parameters = filter(lambda p: p.requires_grad, self.parameters())
|
411 |
+
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
|
412 |
+
if print_out :
|
413 |
+
print('Trainable Parameters: %.3fM' % parameters)
|