rag-ros2 / app.py
mannadamay12's picture
Update app.py
a2f8954 verified
raw
history blame
3.33 kB
import os
import torch
import gradio as gr
import spaces
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, TextStreamer, pipeline, BitsAndBytesConfig, AutoModelForCausalLM
TORCH_VERSION = torch.__version__
SUPPORTED_TORCH_VERSIONS = ['2.0.1', '2.1.2', '2.2.2', '2.4.0']
if TORCH_VERSION.rsplit('+')[0] not in SUPPORTED_TORCH_VERSIONS:
print(f"Warning: Current PyTorch version {TORCH_VERSION} may not be compatible with ZeroGPU. "
f"Supported versions are: {', '.join(SUPPORTED_TORCH_VERSIONS)}")
# Model initialization
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
quantization_config=bnb_config
)
# Initialize InstructEmbeddings
embeddings = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-base",
model_kwargs={"device": "cpu"}
)
db = Chroma(
persist_directory="db",
embedding_function=embeddings
)
# Setup pipeline
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=500,
temperature=0.1,
top_p=0.95,
repetition_penalty=1.15,
streamer=streamer,
)
# Create LLM chain
llm = HuggingFacePipeline(pipeline=text_pipeline)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 2}),
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
@spaces.GPU(duration=30)
def respond(message, history, system_message, max_tokens, temperature, top_p):
try:
# Use the QA chain directly
response = qa_chain.invoke({"query": message})
yield response["result"]
except Exception as e:
yield f"An error occurred: {str(e)}"
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Message",
lines=3,
visible=False
),
gr.Slider(
minimum=1,
maximum=2048,
value=500,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.1,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
title="ROS2 Expert Assistant",
description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)
if __name__ == "__main__":
demo.launch()