BOPBTL / Face_Enhancement /util /iter_counter.py
manhkhanhUIT's picture
Add code
7fab858
raw
history blame
3.01 kB
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import os
import time
import numpy as np
# Helper class that keeps track of training iterations
class IterationCounter:
def __init__(self, opt, dataset_size):
self.opt = opt
self.dataset_size = dataset_size
self.first_epoch = 1
self.total_epochs = opt.niter + opt.niter_decay
self.epoch_iter = 0 # iter number within each epoch
self.iter_record_path = os.path.join(self.opt.checkpoints_dir, self.opt.name, "iter.txt")
if opt.isTrain and opt.continue_train:
try:
self.first_epoch, self.epoch_iter = np.loadtxt(
self.iter_record_path, delimiter=",", dtype=int
)
print("Resuming from epoch %d at iteration %d" % (self.first_epoch, self.epoch_iter))
except:
print(
"Could not load iteration record at %s. Starting from beginning." % self.iter_record_path
)
self.total_steps_so_far = (self.first_epoch - 1) * dataset_size + self.epoch_iter
# return the iterator of epochs for the training
def training_epochs(self):
return range(self.first_epoch, self.total_epochs + 1)
def record_epoch_start(self, epoch):
self.epoch_start_time = time.time()
self.epoch_iter = 0
self.last_iter_time = time.time()
self.current_epoch = epoch
def record_one_iteration(self):
current_time = time.time()
# the last remaining batch is dropped (see data/__init__.py),
# so we can assume batch size is always opt.batchSize
self.time_per_iter = (current_time - self.last_iter_time) / self.opt.batchSize
self.last_iter_time = current_time
self.total_steps_so_far += self.opt.batchSize
self.epoch_iter += self.opt.batchSize
def record_epoch_end(self):
current_time = time.time()
self.time_per_epoch = current_time - self.epoch_start_time
print(
"End of epoch %d / %d \t Time Taken: %d sec"
% (self.current_epoch, self.total_epochs, self.time_per_epoch)
)
if self.current_epoch % self.opt.save_epoch_freq == 0:
np.savetxt(self.iter_record_path, (self.current_epoch + 1, 0), delimiter=",", fmt="%d")
print("Saved current iteration count at %s." % self.iter_record_path)
def record_current_iter(self):
np.savetxt(self.iter_record_path, (self.current_epoch, self.epoch_iter), delimiter=",", fmt="%d")
print("Saved current iteration count at %s." % self.iter_record_path)
def needs_saving(self):
return (self.total_steps_so_far % self.opt.save_latest_freq) < self.opt.batchSize
def needs_printing(self):
return (self.total_steps_so_far % self.opt.print_freq) < self.opt.batchSize
def needs_displaying(self):
return (self.total_steps_so_far % self.opt.display_freq) < self.opt.batchSize