|
import numpy as np |
|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
|
|
class DenseBlocksTemporalReduce(nn.Module): |
|
"""A concatenation of 3 dense blocks with reduction in temporal dimension. |
|
|
|
Note that the output temporal dimension is 6 fewer the input temporal dimension, since there are 3 blocks. |
|
|
|
Args: |
|
num_feat (int): Number of channels in the blocks. Default: 64. |
|
num_grow_ch (int): Growing factor of the dense blocks. Default: 32 |
|
adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation. |
|
Set to false if you want to train from scratch. Default: False. |
|
""" |
|
|
|
def __init__(self, num_feat=64, num_grow_ch=32, adapt_official_weights=False): |
|
super(DenseBlocksTemporalReduce, self).__init__() |
|
if adapt_official_weights: |
|
eps = 1e-3 |
|
momentum = 1e-3 |
|
else: |
|
eps = 1e-05 |
|
momentum = 0.1 |
|
|
|
self.temporal_reduce1 = nn.Sequential( |
|
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True), |
|
nn.Conv3d(num_feat, num_feat, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True), |
|
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True), |
|
nn.Conv3d(num_feat, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)) |
|
|
|
self.temporal_reduce2 = nn.Sequential( |
|
nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True), |
|
nn.Conv3d( |
|
num_feat + num_grow_ch, |
|
num_feat + num_grow_ch, (1, 1, 1), |
|
stride=(1, 1, 1), |
|
padding=(0, 0, 0), |
|
bias=True), nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True), |
|
nn.Conv3d(num_feat + num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)) |
|
|
|
self.temporal_reduce3 = nn.Sequential( |
|
nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True), |
|
nn.Conv3d( |
|
num_feat + 2 * num_grow_ch, |
|
num_feat + 2 * num_grow_ch, (1, 1, 1), |
|
stride=(1, 1, 1), |
|
padding=(0, 0, 0), |
|
bias=True), nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), |
|
nn.ReLU(inplace=True), |
|
nn.Conv3d( |
|
num_feat + 2 * num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): Input tensor with shape (b, num_feat, t, h, w). |
|
|
|
Returns: |
|
Tensor: Output with shape (b, num_feat + num_grow_ch * 3, 1, h, w). |
|
""" |
|
x1 = self.temporal_reduce1(x) |
|
x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1) |
|
|
|
x2 = self.temporal_reduce2(x1) |
|
x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1) |
|
|
|
x3 = self.temporal_reduce3(x2) |
|
x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1) |
|
|
|
return x3 |
|
|
|
|
|
class DenseBlocks(nn.Module): |
|
""" A concatenation of N dense blocks. |
|
|
|
Args: |
|
num_feat (int): Number of channels in the blocks. Default: 64. |
|
num_grow_ch (int): Growing factor of the dense blocks. Default: 32. |
|
num_block (int): Number of dense blocks. The values are: |
|
DUF-S (16 layers): 3 |
|
DUF-M (18 layers): 9 |
|
DUF-L (52 layers): 21 |
|
adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation. |
|
Set to false if you want to train from scratch. Default: False. |
|
""" |
|
|
|
def __init__(self, num_block, num_feat=64, num_grow_ch=16, adapt_official_weights=False): |
|
super(DenseBlocks, self).__init__() |
|
if adapt_official_weights: |
|
eps = 1e-3 |
|
momentum = 1e-3 |
|
else: |
|
eps = 1e-05 |
|
momentum = 0.1 |
|
|
|
self.dense_blocks = nn.ModuleList() |
|
for i in range(0, num_block): |
|
self.dense_blocks.append( |
|
nn.Sequential( |
|
nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True), |
|
nn.Conv3d( |
|
num_feat + i * num_grow_ch, |
|
num_feat + i * num_grow_ch, (1, 1, 1), |
|
stride=(1, 1, 1), |
|
padding=(0, 0, 0), |
|
bias=True), nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), |
|
nn.ReLU(inplace=True), |
|
nn.Conv3d( |
|
num_feat + i * num_grow_ch, |
|
num_grow_ch, (3, 3, 3), |
|
stride=(1, 1, 1), |
|
padding=(1, 1, 1), |
|
bias=True))) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): Input tensor with shape (b, num_feat, t, h, w). |
|
|
|
Returns: |
|
Tensor: Output with shape (b, num_feat + num_block * num_grow_ch, t, h, w). |
|
""" |
|
for i in range(0, len(self.dense_blocks)): |
|
y = self.dense_blocks[i](x) |
|
x = torch.cat((x, y), 1) |
|
return x |
|
|
|
|
|
class DynamicUpsamplingFilter(nn.Module): |
|
"""Dynamic upsampling filter used in DUF. |
|
|
|
Ref: https://github.com/yhjo09/VSR-DUF. |
|
It only supports input with 3 channels. And it applies the same filters to 3 channels. |
|
|
|
Args: |
|
filter_size (tuple): Filter size of generated filters. The shape is (kh, kw). Default: (5, 5). |
|
""" |
|
|
|
def __init__(self, filter_size=(5, 5)): |
|
super(DynamicUpsamplingFilter, self).__init__() |
|
if not isinstance(filter_size, tuple): |
|
raise TypeError(f'The type of filter_size must be tuple, but got type{filter_size}') |
|
if len(filter_size) != 2: |
|
raise ValueError(f'The length of filter size must be 2, but got {len(filter_size)}.') |
|
|
|
self.filter_size = filter_size |
|
filter_prod = np.prod(filter_size) |
|
expansion_filter = torch.eye(int(filter_prod)).view(filter_prod, 1, *filter_size) |
|
self.expansion_filter = expansion_filter.repeat(3, 1, 1, 1) |
|
|
|
def forward(self, x, filters): |
|
"""Forward function for DynamicUpsamplingFilter. |
|
|
|
Args: |
|
x (Tensor): Input image with 3 channels. The shape is (n, 3, h, w). |
|
filters (Tensor): Generated dynamic filters. |
|
The shape is (n, filter_prod, upsampling_square, h, w). |
|
filter_prod: prod of filter kernel size, e.g., 1*5*5=25. |
|
upsampling_square: similar to pixel shuffle, |
|
upsampling_square = upsampling * upsampling |
|
e.g., for x 4 upsampling, upsampling_square= 4*4 = 16 |
|
|
|
Returns: |
|
Tensor: Filtered image with shape (n, 3*upsampling_square, h, w) |
|
""" |
|
n, filter_prod, upsampling_square, h, w = filters.size() |
|
kh, kw = self.filter_size |
|
expanded_input = F.conv2d( |
|
x, self.expansion_filter.to(x), padding=(kh // 2, kw // 2), groups=3) |
|
expanded_input = expanded_input.view(n, 3, filter_prod, h, w).permute(0, 3, 4, 1, |
|
2) |
|
filters = filters.permute(0, 3, 4, 1, 2) |
|
out = torch.matmul(expanded_input, filters) |
|
return out.permute(0, 3, 4, 1, 2).view(n, 3 * upsampling_square, h, w) |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class DUF(nn.Module): |
|
"""Network architecture for DUF |
|
|
|
Paper: Jo et.al. Deep Video Super-Resolution Network Using Dynamic |
|
Upsampling Filters Without Explicit Motion Compensation, CVPR, 2018 |
|
Code reference: |
|
https://github.com/yhjo09/VSR-DUF |
|
For all the models below, 'adapt_official_weights' is only necessary when |
|
loading the weights converted from the official TensorFlow weights. |
|
Please set it to False if you are training the model from scratch. |
|
|
|
There are three models with different model size: DUF16Layers, DUF28Layers, |
|
and DUF52Layers. This class is the base class for these models. |
|
|
|
Args: |
|
scale (int): The upsampling factor. Default: 4. |
|
num_layer (int): The number of layers. Default: 52. |
|
adapt_official_weights_weights (bool): Whether to adapt the weights |
|
translated from the official implementation. Set to false if you |
|
want to train from scratch. Default: False. |
|
""" |
|
|
|
def __init__(self, scale=4, num_layer=52, adapt_official_weights=False): |
|
super(DUF, self).__init__() |
|
self.scale = scale |
|
if adapt_official_weights: |
|
eps = 1e-3 |
|
momentum = 1e-3 |
|
else: |
|
eps = 1e-05 |
|
momentum = 0.1 |
|
|
|
self.conv3d1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) |
|
self.dynamic_filter = DynamicUpsamplingFilter((5, 5)) |
|
|
|
if num_layer == 16: |
|
num_block = 3 |
|
num_grow_ch = 32 |
|
elif num_layer == 28: |
|
num_block = 9 |
|
num_grow_ch = 16 |
|
elif num_layer == 52: |
|
num_block = 21 |
|
num_grow_ch = 16 |
|
else: |
|
raise ValueError(f'Only supported (16, 28, 52) layers, but got {num_layer}.') |
|
|
|
self.dense_block1 = DenseBlocks( |
|
num_block=num_block, num_feat=64, num_grow_ch=num_grow_ch, |
|
adapt_official_weights=adapt_official_weights) |
|
self.dense_block2 = DenseBlocksTemporalReduce( |
|
64 + num_grow_ch * num_block, num_grow_ch, adapt_official_weights=adapt_official_weights) |
|
channels = 64 + num_grow_ch * num_block + num_grow_ch * 3 |
|
self.bn3d2 = nn.BatchNorm3d(channels, eps=eps, momentum=momentum) |
|
self.conv3d2 = nn.Conv3d(channels, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) |
|
|
|
self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) |
|
self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) |
|
|
|
self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) |
|
self.conv3d_f2 = nn.Conv3d( |
|
512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): Input with shape (b, 7, c, h, w) |
|
|
|
Returns: |
|
Tensor: Output with shape (b, c, h * scale, w * scale) |
|
""" |
|
num_batches, num_imgs, _, h, w = x.size() |
|
|
|
x = x.permute(0, 2, 1, 3, 4) |
|
x_center = x[:, :, num_imgs // 2, :, :] |
|
|
|
x = self.conv3d1(x) |
|
x = self.dense_block1(x) |
|
x = self.dense_block2(x) |
|
x = F.relu(self.bn3d2(x), inplace=True) |
|
x = F.relu(self.conv3d2(x), inplace=True) |
|
|
|
|
|
res = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True)) |
|
|
|
|
|
filter_ = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True)) |
|
filter_ = F.softmax(filter_.view(num_batches, 25, self.scale**2, h, w), dim=1) |
|
|
|
|
|
out = self.dynamic_filter(x_center, filter_) |
|
out += res.squeeze_(2) |
|
out = F.pixel_shuffle(out, self.scale) |
|
|
|
return out |
|
|