gradio-lipsync-wav2lip / basicsr /models /video_recurrent_model.py
manavisrani07's picture
Upload 319 files
6c343a2
raw
history blame
8.17 kB
import torch
from collections import Counter
from os import path as osp
from torch import distributed as dist
from tqdm import tqdm
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.dist_util import get_dist_info
from basicsr.utils.registry import MODEL_REGISTRY
from .video_base_model import VideoBaseModel
@MODEL_REGISTRY.register()
class VideoRecurrentModel(VideoBaseModel):
def __init__(self, opt):
super(VideoRecurrentModel, self).__init__(opt)
if self.is_train:
self.fix_flow_iter = opt['train'].get('fix_flow')
def setup_optimizers(self):
train_opt = self.opt['train']
flow_lr_mul = train_opt.get('flow_lr_mul', 1)
logger = get_root_logger()
logger.info(f'Multiple the learning rate for flow network with {flow_lr_mul}.')
if flow_lr_mul == 1:
optim_params = self.net_g.parameters()
else: # separate flow params and normal params for different lr
normal_params = []
flow_params = []
for name, param in self.net_g.named_parameters():
if 'spynet' in name:
flow_params.append(param)
else:
normal_params.append(param)
optim_params = [
{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
},
{
'params': flow_params,
'lr': train_opt['optim_g']['lr'] * flow_lr_mul
},
]
optim_type = train_opt['optim_g'].pop('type')
self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
self.optimizers.append(self.optimizer_g)
def optimize_parameters(self, current_iter):
if self.fix_flow_iter:
logger = get_root_logger()
if current_iter == 1:
logger.info(f'Fix flow network and feature extractor for {self.fix_flow_iter} iters.')
for name, param in self.net_g.named_parameters():
if 'spynet' in name or 'edvr' in name:
param.requires_grad_(False)
elif current_iter == self.fix_flow_iter:
logger.warning('Train all the parameters.')
self.net_g.requires_grad_(True)
super(VideoRecurrentModel, self).optimize_parameters(current_iter)
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
dataset = dataloader.dataset
dataset_name = dataset.opt['name']
with_metrics = self.opt['val']['metrics'] is not None
# initialize self.metric_results
# It is a dict: {
# 'folder1': tensor (num_frame x len(metrics)),
# 'folder2': tensor (num_frame x len(metrics))
# }
if with_metrics:
if not hasattr(self, 'metric_results'): # only execute in the first run
self.metric_results = {}
num_frame_each_folder = Counter(dataset.data_info['folder'])
for folder, num_frame in num_frame_each_folder.items():
self.metric_results[folder] = torch.zeros(
num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda')
# initialize the best metric results
self._initialize_best_metric_results(dataset_name)
# zero self.metric_results
rank, world_size = get_dist_info()
if with_metrics:
for _, tensor in self.metric_results.items():
tensor.zero_()
metric_data = dict()
num_folders = len(dataset)
num_pad = (world_size - (num_folders % world_size)) % world_size
if rank == 0:
pbar = tqdm(total=len(dataset), unit='folder')
# Will evaluate (num_folders + num_pad) times, but only the first num_folders results will be recorded.
# (To avoid wait-dead)
for i in range(rank, num_folders + num_pad, world_size):
idx = min(i, num_folders - 1)
val_data = dataset[idx]
folder = val_data['folder']
# compute outputs
val_data['lq'].unsqueeze_(0)
val_data['gt'].unsqueeze_(0)
self.feed_data(val_data)
val_data['lq'].squeeze_(0)
val_data['gt'].squeeze_(0)
self.test()
visuals = self.get_current_visuals()
# tentative for out of GPU memory
del self.lq
del self.output
if 'gt' in visuals:
del self.gt
torch.cuda.empty_cache()
if self.center_frame_only:
visuals['result'] = visuals['result'].unsqueeze(1)
if 'gt' in visuals:
visuals['gt'] = visuals['gt'].unsqueeze(1)
# evaluate
if i < num_folders:
for idx in range(visuals['result'].size(1)):
result = visuals['result'][0, idx, :, :, :]
result_img = tensor2img([result]) # uint8, bgr
metric_data['img'] = result_img
if 'gt' in visuals:
gt = visuals['gt'][0, idx, :, :, :]
gt_img = tensor2img([gt]) # uint8, bgr
metric_data['img2'] = gt_img
if save_img:
if self.opt['is_train']:
raise NotImplementedError('saving image is not supported during training.')
else:
if self.center_frame_only: # vimeo-90k
clip_ = val_data['lq_path'].split('/')[-3]
seq_ = val_data['lq_path'].split('/')[-2]
name_ = f'{clip_}_{seq_}'
img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
f"{name_}_{self.opt['name']}.png")
else: # others
img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
f"{idx:08d}_{self.opt['name']}.png")
# image name only for REDS dataset
imwrite(result_img, img_path)
# calculate metrics
if with_metrics:
for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()):
result = calculate_metric(metric_data, opt_)
self.metric_results[folder][idx, metric_idx] += result
# progress bar
if rank == 0:
for _ in range(world_size):
pbar.update(1)
pbar.set_description(f'Folder: {folder}')
if rank == 0:
pbar.close()
if with_metrics:
if self.opt['dist']:
# collect data among GPUs
for _, tensor in self.metric_results.items():
dist.reduce(tensor, 0)
dist.barrier()
if rank == 0:
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def test(self):
n = self.lq.size(1)
self.net_g.eval()
flip_seq = self.opt['val'].get('flip_seq', False)
self.center_frame_only = self.opt['val'].get('center_frame_only', False)
if flip_seq:
self.lq = torch.cat([self.lq, self.lq.flip(1)], dim=1)
with torch.no_grad():
self.output = self.net_g(self.lq)
if flip_seq:
output_1 = self.output[:, :n, :, :, :]
output_2 = self.output[:, n:, :, :, :].flip(1)
self.output = 0.5 * (output_1 + output_2)
if self.center_frame_only:
self.output = self.output[:, n // 2, :, :, :]
self.net_g.train()