|
import cv2 |
|
import math |
|
import numpy as np |
|
import os |
|
from scipy.ndimage.filters import convolve |
|
from scipy.special import gamma |
|
|
|
from basicsr.metrics.metric_util import reorder_image, to_y_channel |
|
from basicsr.utils.matlab_functions import imresize |
|
from basicsr.utils.registry import METRIC_REGISTRY |
|
|
|
|
|
def estimate_aggd_param(block): |
|
"""Estimate AGGD (Asymmetric Generalized Gaussian Distribution) parameters. |
|
|
|
Args: |
|
block (ndarray): 2D Image block. |
|
|
|
Returns: |
|
tuple: alpha (float), beta_l (float) and beta_r (float) for the AGGD |
|
distribution (Estimating the parames in Equation 7 in the paper). |
|
""" |
|
block = block.flatten() |
|
gam = np.arange(0.2, 10.001, 0.001) |
|
gam_reciprocal = np.reciprocal(gam) |
|
r_gam = np.square(gamma(gam_reciprocal * 2)) / (gamma(gam_reciprocal) * gamma(gam_reciprocal * 3)) |
|
|
|
left_std = np.sqrt(np.mean(block[block < 0]**2)) |
|
right_std = np.sqrt(np.mean(block[block > 0]**2)) |
|
gammahat = left_std / right_std |
|
rhat = (np.mean(np.abs(block)))**2 / np.mean(block**2) |
|
rhatnorm = (rhat * (gammahat**3 + 1) * (gammahat + 1)) / ((gammahat**2 + 1)**2) |
|
array_position = np.argmin((r_gam - rhatnorm)**2) |
|
|
|
alpha = gam[array_position] |
|
beta_l = left_std * np.sqrt(gamma(1 / alpha) / gamma(3 / alpha)) |
|
beta_r = right_std * np.sqrt(gamma(1 / alpha) / gamma(3 / alpha)) |
|
return (alpha, beta_l, beta_r) |
|
|
|
|
|
def compute_feature(block): |
|
"""Compute features. |
|
|
|
Args: |
|
block (ndarray): 2D Image block. |
|
|
|
Returns: |
|
list: Features with length of 18. |
|
""" |
|
feat = [] |
|
alpha, beta_l, beta_r = estimate_aggd_param(block) |
|
feat.extend([alpha, (beta_l + beta_r) / 2]) |
|
|
|
|
|
|
|
|
|
|
|
shifts = [[0, 1], [1, 0], [1, 1], [1, -1]] |
|
for i in range(len(shifts)): |
|
shifted_block = np.roll(block, shifts[i], axis=(0, 1)) |
|
alpha, beta_l, beta_r = estimate_aggd_param(block * shifted_block) |
|
|
|
mean = (beta_r - beta_l) * (gamma(2 / alpha) / gamma(1 / alpha)) |
|
feat.extend([alpha, mean, beta_l, beta_r]) |
|
return feat |
|
|
|
|
|
def niqe(img, mu_pris_param, cov_pris_param, gaussian_window, block_size_h=96, block_size_w=96): |
|
"""Calculate NIQE (Natural Image Quality Evaluator) metric. |
|
|
|
Ref: Making a "Completely Blind" Image Quality Analyzer. |
|
This implementation could produce almost the same results as the official |
|
MATLAB codes: http://live.ece.utexas.edu/research/quality/niqe_release.zip |
|
|
|
Note that we do not include block overlap height and width, since they are |
|
always 0 in the official implementation. |
|
|
|
For good performance, it is advisable by the official implementation to |
|
divide the distorted image in to the same size patched as used for the |
|
construction of multivariate Gaussian model. |
|
|
|
Args: |
|
img (ndarray): Input image whose quality needs to be computed. The |
|
image must be a gray or Y (of YCbCr) image with shape (h, w). |
|
Range [0, 255] with float type. |
|
mu_pris_param (ndarray): Mean of a pre-defined multivariate Gaussian |
|
model calculated on the pristine dataset. |
|
cov_pris_param (ndarray): Covariance of a pre-defined multivariate |
|
Gaussian model calculated on the pristine dataset. |
|
gaussian_window (ndarray): A 7x7 Gaussian window used for smoothing the |
|
image. |
|
block_size_h (int): Height of the blocks in to which image is divided. |
|
Default: 96 (the official recommended value). |
|
block_size_w (int): Width of the blocks in to which image is divided. |
|
Default: 96 (the official recommended value). |
|
""" |
|
assert img.ndim == 2, ('Input image must be a gray or Y (of YCbCr) image with shape (h, w).') |
|
|
|
h, w = img.shape |
|
num_block_h = math.floor(h / block_size_h) |
|
num_block_w = math.floor(w / block_size_w) |
|
img = img[0:num_block_h * block_size_h, 0:num_block_w * block_size_w] |
|
|
|
distparam = [] |
|
for scale in (1, 2): |
|
mu = convolve(img, gaussian_window, mode='nearest') |
|
sigma = np.sqrt(np.abs(convolve(np.square(img), gaussian_window, mode='nearest') - np.square(mu))) |
|
|
|
img_nomalized = (img - mu) / (sigma + 1) |
|
|
|
feat = [] |
|
for idx_w in range(num_block_w): |
|
for idx_h in range(num_block_h): |
|
|
|
block = img_nomalized[idx_h * block_size_h // scale:(idx_h + 1) * block_size_h // scale, |
|
idx_w * block_size_w // scale:(idx_w + 1) * block_size_w // scale] |
|
feat.append(compute_feature(block)) |
|
|
|
distparam.append(np.array(feat)) |
|
|
|
if scale == 1: |
|
img = imresize(img / 255., scale=0.5, antialiasing=True) |
|
img = img * 255. |
|
|
|
distparam = np.concatenate(distparam, axis=1) |
|
|
|
|
|
mu_distparam = np.nanmean(distparam, axis=0) |
|
|
|
distparam_no_nan = distparam[~np.isnan(distparam).any(axis=1)] |
|
cov_distparam = np.cov(distparam_no_nan, rowvar=False) |
|
|
|
|
|
invcov_param = np.linalg.pinv((cov_pris_param + cov_distparam) / 2) |
|
quality = np.matmul( |
|
np.matmul((mu_pris_param - mu_distparam), invcov_param), np.transpose((mu_pris_param - mu_distparam))) |
|
|
|
quality = np.sqrt(quality) |
|
quality = float(np.squeeze(quality)) |
|
return quality |
|
|
|
|
|
@METRIC_REGISTRY.register() |
|
def calculate_niqe(img, crop_border, input_order='HWC', convert_to='y', **kwargs): |
|
"""Calculate NIQE (Natural Image Quality Evaluator) metric. |
|
|
|
Ref: Making a "Completely Blind" Image Quality Analyzer. |
|
This implementation could produce almost the same results as the official |
|
MATLAB codes: http://live.ece.utexas.edu/research/quality/niqe_release.zip |
|
|
|
> MATLAB R2021a result for tests/data/baboon.png: 5.72957338 (5.7296) |
|
> Our re-implementation result for tests/data/baboon.png: 5.7295763 (5.7296) |
|
|
|
We use the official params estimated from the pristine dataset. |
|
We use the recommended block size (96, 96) without overlaps. |
|
|
|
Args: |
|
img (ndarray): Input image whose quality needs to be computed. |
|
The input image must be in range [0, 255] with float/int type. |
|
The input_order of image can be 'HW' or 'HWC' or 'CHW'. (BGR order) |
|
If the input order is 'HWC' or 'CHW', it will be converted to gray |
|
or Y (of YCbCr) image according to the ``convert_to`` argument. |
|
crop_border (int): Cropped pixels in each edge of an image. These |
|
pixels are not involved in the metric calculation. |
|
input_order (str): Whether the input order is 'HW', 'HWC' or 'CHW'. |
|
Default: 'HWC'. |
|
convert_to (str): Whether converted to 'y' (of MATLAB YCbCr) or 'gray'. |
|
Default: 'y'. |
|
|
|
Returns: |
|
float: NIQE result. |
|
""" |
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
niqe_pris_params = np.load(os.path.join(ROOT_DIR, 'niqe_pris_params.npz')) |
|
mu_pris_param = niqe_pris_params['mu_pris_param'] |
|
cov_pris_param = niqe_pris_params['cov_pris_param'] |
|
gaussian_window = niqe_pris_params['gaussian_window'] |
|
|
|
img = img.astype(np.float32) |
|
if input_order != 'HW': |
|
img = reorder_image(img, input_order=input_order) |
|
if convert_to == 'y': |
|
img = to_y_channel(img) |
|
elif convert_to == 'gray': |
|
img = cv2.cvtColor(img / 255., cv2.COLOR_BGR2GRAY) * 255. |
|
img = np.squeeze(img) |
|
|
|
if crop_border != 0: |
|
img = img[crop_border:-crop_border, crop_border:-crop_border] |
|
|
|
|
|
img = img.round() |
|
|
|
niqe_result = niqe(img, mu_pris_param, cov_pris_param, gaussian_window) |
|
|
|
return niqe_result |
|
|