Spaces:
Sleeping
Sleeping
manasvinid
commited on
Commit
•
8981128
1
Parent(s):
04ff643
Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,9 @@ st.header('Input')
|
|
27 |
jobs_data= job_desc_pdf()
|
28 |
resume_data= resume_pdf()
|
29 |
|
|
|
|
|
|
|
30 |
|
31 |
# setup_nltk_resources()
|
32 |
|
@@ -40,30 +43,69 @@ jobs_data['processed_description'] = jobs_data['description'].apply(preprocess_t
|
|
40 |
jobs_data_cleaned = drop_duplicates(jobs_data, column_name='description')
|
41 |
|
42 |
|
|
|
43 |
resume_data['processed_resume'] = resume_data['Resume'].apply(preprocess_text)
|
44 |
resume_data_cleaned = drop_duplicates(resume_data, column_name='Resume')
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
jobs_data_cleaned_with_tokens = add_token_count_column(jobs_data_cleaned, column_name='processed_description')
|
47 |
resume_data_cleaned_with_tokens = add_token_count_column(resume_data_cleaned, column_name='processed_resume')
|
48 |
|
|
|
|
|
|
|
49 |
# Dropping unnecessary columns from jobs data
|
50 |
jobs_data_final = jobs_data_cleaned_with_tokens[['processed_description', 'token_count']]
|
51 |
|
52 |
# Dropping unnecessary columns from resume data
|
53 |
resume_data_final = resume_data_cleaned_with_tokens[['processed_resume', 'token_count']]
|
54 |
|
|
|
|
|
|
|
55 |
|
56 |
summarizer = TextSummarizer("geekradius/bart-large-cnn-fintetuned-samsum-repo")
|
57 |
|
58 |
-
# Summarize the top 100 'processed_description' of jobs_data_final
|
59 |
-
top_jobs_data = jobs_data_final.head(100)
|
60 |
|
61 |
# Summariz jobs description
|
62 |
-
jobs_data_summarized = batch_summarize(
|
63 |
|
64 |
# Summarize all 'processed_resume' in resume_data_final
|
65 |
resume_data_summarized = batch_summarize(resume_data_final, 'processed_resume', summarizer, batch_size=10, output_col='summarized_resume')
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
|
|
27 |
jobs_data= job_desc_pdf()
|
28 |
resume_data= resume_pdf()
|
29 |
|
30 |
+
st.write('input to df:')
|
31 |
+
st.write(jobs_data)
|
32 |
+
st.write(resume_data)
|
33 |
|
34 |
# setup_nltk_resources()
|
35 |
|
|
|
43 |
jobs_data_cleaned = drop_duplicates(jobs_data, column_name='description')
|
44 |
|
45 |
|
46 |
+
|
47 |
resume_data['processed_resume'] = resume_data['Resume'].apply(preprocess_text)
|
48 |
resume_data_cleaned = drop_duplicates(resume_data, column_name='Resume')
|
49 |
|
50 |
+
st.write("CLEANED")
|
51 |
+
st.write(jobs_data_cleaned)
|
52 |
+
st.write(resume_data_cleaned)
|
53 |
+
|
54 |
+
|
55 |
jobs_data_cleaned_with_tokens = add_token_count_column(jobs_data_cleaned, column_name='processed_description')
|
56 |
resume_data_cleaned_with_tokens = add_token_count_column(resume_data_cleaned, column_name='processed_resume')
|
57 |
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
# Dropping unnecessary columns from jobs data
|
62 |
jobs_data_final = jobs_data_cleaned_with_tokens[['processed_description', 'token_count']]
|
63 |
|
64 |
# Dropping unnecessary columns from resume data
|
65 |
resume_data_final = resume_data_cleaned_with_tokens[['processed_resume', 'token_count']]
|
66 |
|
67 |
+
st.write("CLEANED WITH TOKENS")
|
68 |
+
st.write(jobs_data_final)
|
69 |
+
st.write(resume_data_final)
|
70 |
|
71 |
summarizer = TextSummarizer("geekradius/bart-large-cnn-fintetuned-samsum-repo")
|
72 |
|
|
|
|
|
73 |
|
74 |
# Summariz jobs description
|
75 |
+
jobs_data_summarized = batch_summarize(jobs_data_final, 'processed_description', summarizer, batch_size=10, output_col='summarized_description')
|
76 |
|
77 |
# Summarize all 'processed_resume' in resume_data_final
|
78 |
resume_data_summarized = batch_summarize(resume_data_final, 'processed_resume', summarizer, batch_size=10, output_col='summarized_resume')
|
79 |
|
80 |
|
81 |
+
# Example Usage
|
82 |
+
encoder = SentenceTransformerEncoder(model_name='all-MiniLM-L6-v2')
|
83 |
+
|
84 |
+
# Encoding the summarized job descriptions
|
85 |
+
jobs_data_summarized_and_encoded = encoder.encode_column(jobs_data_summarized, 'summarized_description')
|
86 |
+
|
87 |
+
# Encoding the summarized resumes
|
88 |
+
resume_data_summarized_and_encoded = encoder.encode_column(resume_data_summarized, 'summarized_resume')
|
89 |
+
|
90 |
+
|
91 |
+
# Combine the jobs data
|
92 |
+
jobs_combined = pd.merge(
|
93 |
+
jobs_data_final,
|
94 |
+
jobs_data_summarized_and_encoded[['summarized_description', 'summarized_description_encoded']],
|
95 |
+
left_index=True, right_index=True)
|
96 |
+
|
97 |
+
# Combine the resume data
|
98 |
+
resume_combined = pd.merge(
|
99 |
+
resume_data_final,
|
100 |
+
resume_data_summarized_and_encoded[['summarized_resume', 'summarized_resume_encoded']],
|
101 |
+
left_index=True, right_index=True)
|
102 |
+
|
103 |
+
# Reset index of DataFrame
|
104 |
+
jobs_combined.reset_index(drop=True, inplace=True)
|
105 |
+
resume_combined.reset_index(drop=True, inplace=True)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
|
111 |
|