Spaces:
Sleeping
Sleeping
import os | |
import uuid | |
import pandas as pd | |
from qdrant_client import QdrantClient, models | |
from sentence_transformers import SentenceTransformer | |
# === Step 1: Ensure Qdrant directory exists === | |
if not os.path.exists("qdrant_data"): | |
os.makedirs("qdrant_data") | |
# === Step 2: Load dataset === | |
data = pd.read_csv("math_dataset (2).csv") # Ensure this CSV is present and formatted correctly | |
# === Step 3: Encode questions === | |
embedding_model = SentenceTransformer("intfloat/e5-large") | |
vectors = embedding_model.encode(data["problem"].tolist(), show_progress_bar=True) | |
# === Step 4: Initialize local Qdrant client === | |
client = QdrantClient(path="qdrant_data") | |
# === Step 5: Create collection (recreate ensures it's fresh) === | |
collection_name = "math_problems" | |
client.recreate_collection( | |
collection_name=collection_name, | |
vectors_config=models.VectorParams(size=vectors.shape[1], distance=models.Distance.COSINE) | |
) | |
# === Step 6: Prepare payload and upload with UUIDs === | |
payload = data.to_dict(orient="records") | |
ids = [str(uuid.uuid4()) for _ in range(len(vectors))] | |
client.upload_collection( | |
collection_name=collection_name, | |
vectors=vectors, | |
payload=payload, | |
ids=ids | |
) | |
print("β Qdrant vector store created and populated successfully in `qdrant_data/`.") | |