|
import argparse |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import time |
|
from copy import deepcopy |
|
from pathlib import Path |
|
from threading import Thread |
|
|
|
import numpy as np |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
import torch.optim.lr_scheduler as lr_scheduler |
|
import torch.utils.data |
|
import yaml |
|
from torch.cuda import amp |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.utils.tensorboard import SummaryWriter |
|
from tqdm import tqdm |
|
|
|
import test |
|
from models.experimental import attempt_load |
|
from models.yolo import Model |
|
from utils.autoanchor import check_anchors |
|
from utils.datasets import create_dataloader |
|
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \ |
|
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \ |
|
check_requirements, print_mutation, set_logging, one_cycle, colorstr |
|
from utils.google_utils import attempt_download |
|
from utils.loss import ComputeLoss, ComputeLossOTA |
|
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution |
|
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel |
|
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def train(hyp, opt, device, tb_writer=None): |
|
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) |
|
save_dir, epochs, batch_size, total_batch_size, weights, rank, freeze = \ |
|
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank, opt.freeze |
|
|
|
|
|
wdir = save_dir / 'weights' |
|
wdir.mkdir(parents=True, exist_ok=True) |
|
last = wdir / 'last.pt' |
|
best = wdir / 'best.pt' |
|
results_file = save_dir / 'results.txt' |
|
|
|
|
|
with open(save_dir / 'hyp.yaml', 'w') as f: |
|
yaml.dump(hyp, f, sort_keys=False) |
|
with open(save_dir / 'opt.yaml', 'w') as f: |
|
yaml.dump(vars(opt), f, sort_keys=False) |
|
|
|
|
|
plots = not opt.evolve |
|
cuda = device.type != 'cpu' |
|
init_seeds(2 + rank) |
|
with open(opt.data) as f: |
|
data_dict = yaml.load(f, Loader=yaml.SafeLoader) |
|
is_coco = opt.data.endswith('coco.yaml') |
|
|
|
|
|
loggers = {'wandb': None} |
|
if rank in [-1, 0]: |
|
opt.hyp = hyp |
|
run_id = torch.load(weights, map_location=device).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None |
|
wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict) |
|
loggers['wandb'] = wandb_logger.wandb |
|
data_dict = wandb_logger.data_dict |
|
if wandb_logger.wandb: |
|
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp |
|
|
|
nc = 1 if opt.single_cls else int(data_dict['nc']) |
|
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] |
|
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) |
|
|
|
|
|
pretrained = weights.endswith('.pt') |
|
if pretrained: |
|
with torch_distributed_zero_first(rank): |
|
attempt_download(weights) |
|
ckpt = torch.load(weights, map_location=device) |
|
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) |
|
exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] |
|
state_dict = ckpt['model'].float().state_dict() |
|
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) |
|
model.load_state_dict(state_dict, strict=False) |
|
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) |
|
else: |
|
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) |
|
with torch_distributed_zero_first(rank): |
|
check_dataset(data_dict) |
|
train_path = data_dict['train'] |
|
test_path = data_dict['val'] |
|
|
|
|
|
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] |
|
for k, v in model.named_parameters(): |
|
v.requires_grad = True |
|
if any(x in k for x in freeze): |
|
print('freezing %s' % k) |
|
v.requires_grad = False |
|
|
|
|
|
nbs = 64 |
|
accumulate = max(round(nbs / total_batch_size), 1) |
|
hyp['weight_decay'] *= total_batch_size * accumulate / nbs |
|
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") |
|
|
|
pg0, pg1, pg2 = [], [], [] |
|
for k, v in model.named_modules(): |
|
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): |
|
pg2.append(v.bias) |
|
if isinstance(v, nn.BatchNorm2d): |
|
pg0.append(v.weight) |
|
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): |
|
pg1.append(v.weight) |
|
if hasattr(v, 'im'): |
|
if hasattr(v.im, 'implicit'): |
|
pg0.append(v.im.implicit) |
|
else: |
|
for iv in v.im: |
|
pg0.append(iv.implicit) |
|
if hasattr(v, 'imc'): |
|
if hasattr(v.imc, 'implicit'): |
|
pg0.append(v.imc.implicit) |
|
else: |
|
for iv in v.imc: |
|
pg0.append(iv.implicit) |
|
if hasattr(v, 'imb'): |
|
if hasattr(v.imb, 'implicit'): |
|
pg0.append(v.imb.implicit) |
|
else: |
|
for iv in v.imb: |
|
pg0.append(iv.implicit) |
|
if hasattr(v, 'imo'): |
|
if hasattr(v.imo, 'implicit'): |
|
pg0.append(v.imo.implicit) |
|
else: |
|
for iv in v.imo: |
|
pg0.append(iv.implicit) |
|
if hasattr(v, 'ia'): |
|
if hasattr(v.ia, 'implicit'): |
|
pg0.append(v.ia.implicit) |
|
else: |
|
for iv in v.ia: |
|
pg0.append(iv.implicit) |
|
if hasattr(v, 'attn'): |
|
if hasattr(v.attn, 'logit_scale'): |
|
pg0.append(v.attn.logit_scale) |
|
if hasattr(v.attn, 'q_bias'): |
|
pg0.append(v.attn.q_bias) |
|
if hasattr(v.attn, 'v_bias'): |
|
pg0.append(v.attn.v_bias) |
|
if hasattr(v.attn, 'relative_position_bias_table'): |
|
pg0.append(v.attn.relative_position_bias_table) |
|
if hasattr(v, 'rbr_dense'): |
|
if hasattr(v.rbr_dense, 'weight_rbr_origin'): |
|
pg0.append(v.rbr_dense.weight_rbr_origin) |
|
if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'): |
|
pg0.append(v.rbr_dense.weight_rbr_avg_conv) |
|
if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'): |
|
pg0.append(v.rbr_dense.weight_rbr_pfir_conv) |
|
if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'): |
|
pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1) |
|
if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'): |
|
pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2) |
|
if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'): |
|
pg0.append(v.rbr_dense.weight_rbr_gconv_dw) |
|
if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'): |
|
pg0.append(v.rbr_dense.weight_rbr_gconv_pw) |
|
if hasattr(v.rbr_dense, 'vector'): |
|
pg0.append(v.rbr_dense.vector) |
|
|
|
if opt.adam: |
|
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) |
|
else: |
|
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) |
|
|
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) |
|
optimizer.add_param_group({'params': pg2}) |
|
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) |
|
del pg0, pg1, pg2 |
|
|
|
|
|
|
|
if opt.linear_lr: |
|
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] |
|
else: |
|
lf = one_cycle(1, hyp['lrf'], epochs) |
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|
|
|
|
|
|
|
ema = ModelEMA(model) if rank in [-1, 0] else None |
|
|
|
|
|
start_epoch, best_fitness = 0, 0.0 |
|
if pretrained: |
|
|
|
if ckpt['optimizer'] is not None: |
|
optimizer.load_state_dict(ckpt['optimizer']) |
|
best_fitness = ckpt['best_fitness'] |
|
|
|
|
|
if ema and ckpt.get('ema'): |
|
ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) |
|
ema.updates = ckpt['updates'] |
|
|
|
|
|
if ckpt.get('training_results') is not None: |
|
results_file.write_text(ckpt['training_results']) |
|
|
|
|
|
start_epoch = ckpt['epoch'] + 1 |
|
if opt.resume: |
|
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) |
|
if epochs < start_epoch: |
|
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % |
|
(weights, ckpt['epoch'], epochs)) |
|
epochs += ckpt['epoch'] |
|
|
|
del ckpt, state_dict |
|
|
|
|
|
gs = max(int(model.stride.max()), 32) |
|
nl = model.model[-1].nl |
|
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] |
|
|
|
|
|
if cuda and rank == -1 and torch.cuda.device_count() > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if opt.sync_bn and cuda and rank != -1: |
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) |
|
logger.info('Using SyncBatchNorm()') |
|
|
|
|
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, |
|
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, |
|
world_size=opt.world_size, workers=opt.workers, |
|
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) |
|
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() |
|
nb = len(dataloader) |
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) |
|
|
|
|
|
if rank in [-1, 0]: |
|
testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, |
|
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1, |
|
world_size=opt.world_size, workers=opt.workers, |
|
pad=0.5, prefix=colorstr('val: '))[0] |
|
|
|
if not opt.resume: |
|
labels = np.concatenate(dataset.labels, 0) |
|
c = torch.tensor(labels[:, 0]) |
|
|
|
|
|
if plots: |
|
|
|
if tb_writer: |
|
tb_writer.add_histogram('classes', c, 0) |
|
|
|
|
|
if not opt.noautoanchor: |
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) |
|
model.half().float() |
|
|
|
|
|
if cuda and rank != -1: |
|
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank, |
|
|
|
find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules())) |
|
|
|
|
|
hyp['box'] *= 3. / nl |
|
hyp['cls'] *= nc / 80. * 3. / nl |
|
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl |
|
hyp['label_smoothing'] = opt.label_smoothing |
|
model.nc = nc |
|
model.hyp = hyp |
|
model.gr = 1.0 |
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc |
|
model.names = names |
|
|
|
|
|
t0 = time.time() |
|
nw = max(round(hyp['warmup_epochs'] * nb), 1000) |
|
|
|
maps = np.zeros(nc) |
|
results = (0, 0, 0, 0, 0, 0, 0) |
|
scheduler.last_epoch = start_epoch - 1 |
|
scaler = amp.GradScaler(enabled=cuda) |
|
compute_loss_ota = ComputeLossOTA(model) |
|
compute_loss = ComputeLoss(model) |
|
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n' |
|
f'Using {dataloader.num_workers} dataloader workers\n' |
|
f'Logging results to {save_dir}\n' |
|
f'Starting training for {epochs} epochs...') |
|
torch.save(model, wdir / 'init.pt') |
|
for epoch in range(start_epoch, epochs): |
|
model.train() |
|
|
|
|
|
if opt.image_weights: |
|
|
|
if rank in [-1, 0]: |
|
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc |
|
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) |
|
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) |
|
|
|
if rank != -1: |
|
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() |
|
dist.broadcast(indices, 0) |
|
if rank != 0: |
|
dataset.indices = indices.cpu().numpy() |
|
|
|
|
|
|
|
|
|
|
|
mloss = torch.zeros(4, device=device) |
|
if rank != -1: |
|
dataloader.sampler.set_epoch(epoch) |
|
pbar = enumerate(dataloader) |
|
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) |
|
if rank in [-1, 0]: |
|
pbar = tqdm(pbar, total=nb) |
|
optimizer.zero_grad() |
|
for i, (imgs, targets, paths, _) in pbar: |
|
ni = i + nb * epoch |
|
imgs = imgs.to(device, non_blocking=True).float() / 255.0 |
|
|
|
|
|
if ni <= nw: |
|
xi = [0, nw] |
|
|
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) |
|
for j, x in enumerate(optimizer.param_groups): |
|
|
|
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) |
|
if 'momentum' in x: |
|
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) |
|
|
|
|
|
if opt.multi_scale: |
|
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs |
|
sf = sz / max(imgs.shape[2:]) |
|
if sf != 1: |
|
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] |
|
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) |
|
|
|
|
|
with amp.autocast(enabled=cuda): |
|
pred = model(imgs) |
|
if 'loss_ota' not in hyp or hyp['loss_ota'] == 1: |
|
loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) |
|
else: |
|
loss, loss_items = compute_loss(pred, targets.to(device)) |
|
if rank != -1: |
|
loss *= opt.world_size |
|
if opt.quad: |
|
loss *= 4. |
|
|
|
|
|
scaler.scale(loss).backward() |
|
|
|
|
|
if ni % accumulate == 0: |
|
scaler.step(optimizer) |
|
scaler.update() |
|
optimizer.zero_grad() |
|
if ema: |
|
ema.update(model) |
|
|
|
|
|
if rank in [-1, 0]: |
|
mloss = (mloss * i + loss_items) / (i + 1) |
|
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) |
|
s = ('%10s' * 2 + '%10.4g' * 6) % ( |
|
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) |
|
pbar.set_description(s) |
|
|
|
|
|
if plots and ni < 10: |
|
f = save_dir / f'train_batch{ni}.jpg' |
|
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() |
|
|
|
|
|
|
|
elif plots and ni == 10 and wandb_logger.wandb: |
|
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in |
|
save_dir.glob('train*.jpg') if x.exists()]}) |
|
|
|
|
|
|
|
|
|
|
|
lr = [x['lr'] for x in optimizer.param_groups] |
|
scheduler.step() |
|
|
|
|
|
if rank in [-1, 0]: |
|
|
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) |
|
final_epoch = epoch + 1 == epochs |
|
if not opt.notest or final_epoch: |
|
wandb_logger.current_epoch = epoch + 1 |
|
results, maps, times = test.test(data_dict, |
|
batch_size=batch_size * 2, |
|
imgsz=imgsz_test, |
|
model=ema.ema, |
|
single_cls=opt.single_cls, |
|
dataloader=testloader, |
|
save_dir=save_dir, |
|
verbose=nc < 50 and final_epoch, |
|
plots=plots and final_epoch, |
|
wandb_logger=wandb_logger, |
|
compute_loss=compute_loss, |
|
is_coco=is_coco, |
|
v5_metric=opt.v5_metric) |
|
|
|
|
|
with open(results_file, 'a') as f: |
|
f.write(s + '%10.4g' * 7 % results + '\n') |
|
if len(opt.name) and opt.bucket: |
|
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) |
|
|
|
|
|
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', |
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', |
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', |
|
'x/lr0', 'x/lr1', 'x/lr2'] |
|
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): |
|
if tb_writer: |
|
tb_writer.add_scalar(tag, x, epoch) |
|
if wandb_logger.wandb: |
|
wandb_logger.log({tag: x}) |
|
|
|
|
|
fi = fitness(np.array(results).reshape(1, -1)) |
|
if fi > best_fitness: |
|
best_fitness = fi |
|
wandb_logger.end_epoch(best_result=best_fitness == fi) |
|
|
|
|
|
if (not opt.nosave) or (final_epoch and not opt.evolve): |
|
ckpt = {'epoch': epoch, |
|
'best_fitness': best_fitness, |
|
'training_results': results_file.read_text(), |
|
'model': deepcopy(model.module if is_parallel(model) else model).half(), |
|
'ema': deepcopy(ema.ema).half(), |
|
'updates': ema.updates, |
|
'optimizer': optimizer.state_dict(), |
|
'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None} |
|
|
|
|
|
torch.save(ckpt, last) |
|
if best_fitness == fi: |
|
torch.save(ckpt, best) |
|
if (best_fitness == fi) and (epoch >= 200): |
|
torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch)) |
|
if epoch == 0: |
|
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) |
|
elif ((epoch+1) % 25) == 0: |
|
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) |
|
elif epoch >= (epochs-5): |
|
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch)) |
|
if wandb_logger.wandb: |
|
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: |
|
wandb_logger.log_model( |
|
last.parent, opt, epoch, fi, best_model=best_fitness == fi) |
|
del ckpt |
|
|
|
|
|
|
|
if rank in [-1, 0]: |
|
|
|
if plots: |
|
plot_results(save_dir=save_dir) |
|
if wandb_logger.wandb: |
|
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] |
|
wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files |
|
if (save_dir / f).exists()]}) |
|
|
|
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) |
|
if opt.data.endswith('coco.yaml') and nc == 80: |
|
for m in (last, best) if best.exists() else (last): |
|
results, _, _ = test.test(opt.data, |
|
batch_size=batch_size * 2, |
|
imgsz=imgsz_test, |
|
conf_thres=0.001, |
|
iou_thres=0.7, |
|
model=attempt_load(m, device).half(), |
|
single_cls=opt.single_cls, |
|
dataloader=testloader, |
|
save_dir=save_dir, |
|
save_json=True, |
|
plots=False, |
|
is_coco=is_coco, |
|
v5_metric=opt.v5_metric) |
|
|
|
|
|
final = best if best.exists() else last |
|
for f in last, best: |
|
if f.exists(): |
|
strip_optimizer(f) |
|
if opt.bucket: |
|
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') |
|
if wandb_logger.wandb and not opt.evolve: |
|
wandb_logger.wandb.log_artifact(str(final), type='model', |
|
name='run_' + wandb_logger.wandb_run.id + '_model', |
|
aliases=['last', 'best', 'stripped']) |
|
wandb_logger.finish_run() |
|
else: |
|
dist.destroy_process_group() |
|
torch.cuda.empty_cache() |
|
return results |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default='yolo7.pt', help='initial weights path') |
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') |
|
parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path') |
|
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path') |
|
parser.add_argument('--epochs', type=int, default=300) |
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') |
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') |
|
parser.add_argument('--rect', action='store_true', help='rectangular training') |
|
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') |
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') |
|
parser.add_argument('--notest', action='store_true', help='only test final epoch') |
|
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') |
|
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') |
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') |
|
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') |
|
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') |
|
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') |
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') |
|
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') |
|
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') |
|
parser.add_argument('--project', default='runs/train', help='save to project/name') |
|
parser.add_argument('--entity', default=None, help='W&B entity') |
|
parser.add_argument('--name', default='exp', help='save to project/name') |
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
parser.add_argument('--quad', action='store_true', help='quad dataloader') |
|
parser.add_argument('--linear-lr', action='store_true', help='linear LR') |
|
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') |
|
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table') |
|
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B') |
|
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch') |
|
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used') |
|
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone of yolov7=50, first3=0 1 2') |
|
parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation') |
|
opt = parser.parse_args() |
|
|
|
|
|
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 |
|
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 |
|
set_logging(opt.global_rank) |
|
|
|
|
|
|
|
|
|
|
|
wandb_run = check_wandb_resume(opt) |
|
if opt.resume and not wandb_run: |
|
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() |
|
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' |
|
apriori = opt.global_rank, opt.local_rank |
|
with open(Path(ckpt).parent.parent / 'opt.yaml') as f: |
|
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) |
|
opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori |
|
logger.info('Resuming training from %s' % ckpt) |
|
else: |
|
|
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) |
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) |
|
opt.name = 'evolve' if opt.evolve else opt.name |
|
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) |
|
|
|
|
|
opt.total_batch_size = opt.batch_size |
|
device = select_device(opt.device, batch_size=opt.batch_size) |
|
if opt.local_rank != -1: |
|
assert torch.cuda.device_count() > opt.local_rank |
|
torch.cuda.set_device(opt.local_rank) |
|
device = torch.device('cuda', opt.local_rank) |
|
dist.init_process_group(backend='nccl', init_method='env://') |
|
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' |
|
opt.batch_size = opt.total_batch_size // opt.world_size |
|
|
|
|
|
with open(opt.hyp) as f: |
|
hyp = yaml.load(f, Loader=yaml.SafeLoader) |
|
|
|
|
|
logger.info(opt) |
|
if not opt.evolve: |
|
tb_writer = None |
|
if opt.global_rank in [-1, 0]: |
|
prefix = colorstr('tensorboard: ') |
|
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") |
|
tb_writer = SummaryWriter(opt.save_dir) |
|
train(hyp, opt, device, tb_writer) |
|
|
|
|
|
else: |
|
|
|
meta = {'lr0': (1, 1e-5, 1e-1), |
|
'lrf': (1, 0.01, 1.0), |
|
'momentum': (0.3, 0.6, 0.98), |
|
'weight_decay': (1, 0.0, 0.001), |
|
'warmup_epochs': (1, 0.0, 5.0), |
|
'warmup_momentum': (1, 0.0, 0.95), |
|
'warmup_bias_lr': (1, 0.0, 0.2), |
|
'box': (1, 0.02, 0.2), |
|
'cls': (1, 0.2, 4.0), |
|
'cls_pw': (1, 0.5, 2.0), |
|
'obj': (1, 0.2, 4.0), |
|
'obj_pw': (1, 0.5, 2.0), |
|
'iou_t': (0, 0.1, 0.7), |
|
'anchor_t': (1, 2.0, 8.0), |
|
'anchors': (2, 2.0, 10.0), |
|
'fl_gamma': (0, 0.0, 2.0), |
|
'hsv_h': (1, 0.0, 0.1), |
|
'hsv_s': (1, 0.0, 0.9), |
|
'hsv_v': (1, 0.0, 0.9), |
|
'degrees': (1, 0.0, 45.0), |
|
'translate': (1, 0.0, 0.9), |
|
'scale': (1, 0.0, 0.9), |
|
'shear': (1, 0.0, 10.0), |
|
'perspective': (0, 0.0, 0.001), |
|
'flipud': (1, 0.0, 1.0), |
|
'fliplr': (0, 0.0, 1.0), |
|
'mosaic': (1, 0.0, 1.0), |
|
'mixup': (1, 0.0, 1.0), |
|
'copy_paste': (1, 0.0, 1.0), |
|
'paste_in': (1, 0.0, 1.0)} |
|
|
|
with open(opt.hyp, errors='ignore') as f: |
|
hyp = yaml.safe_load(f) |
|
if 'anchors' not in hyp: |
|
hyp['anchors'] = 3 |
|
|
|
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve' |
|
opt.notest, opt.nosave = True, True |
|
|
|
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' |
|
if opt.bucket: |
|
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) |
|
|
|
for _ in range(300): |
|
if Path('evolve.txt').exists(): |
|
|
|
parent = 'single' |
|
x = np.loadtxt('evolve.txt', ndmin=2) |
|
n = min(5, len(x)) |
|
x = x[np.argsort(-fitness(x))][:n] |
|
w = fitness(x) - fitness(x).min() |
|
if parent == 'single' or len(x) == 1: |
|
|
|
x = x[random.choices(range(n), weights=w)[0]] |
|
elif parent == 'weighted': |
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() |
|
|
|
|
|
mp, s = 0.8, 0.2 |
|
npr = np.random |
|
npr.seed(int(time.time())) |
|
g = np.array([x[0] for x in meta.values()]) |
|
ng = len(meta) |
|
v = np.ones(ng) |
|
while all(v == 1): |
|
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) |
|
for i, k in enumerate(hyp.keys()): |
|
hyp[k] = float(x[i + 7] * v[i]) |
|
|
|
|
|
for k, v in meta.items(): |
|
hyp[k] = max(hyp[k], v[1]) |
|
hyp[k] = min(hyp[k], v[2]) |
|
hyp[k] = round(hyp[k], 5) |
|
|
|
|
|
results = train(hyp.copy(), opt, device) |
|
|
|
|
|
print_mutation(hyp.copy(), results, yaml_file, opt.bucket) |
|
|
|
|
|
plot_evolution(yaml_file) |
|
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n' |
|
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}') |
|
|