Spaces:
Sleeping
Sleeping
# Dataset utils and dataloaders | |
import glob | |
import logging | |
import math | |
import os | |
import random | |
import shutil | |
import time | |
from itertools import repeat | |
from multiprocessing.pool import ThreadPool | |
from pathlib import Path | |
from threading import Thread | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image, ExifTags | |
from torch.utils.data import Dataset | |
from tqdm import tqdm | |
import pickle | |
from copy import deepcopy | |
#from pycocotools import mask as maskUtils | |
from torchvision.utils import save_image | |
from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align | |
from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \ | |
resample_segments, clean_str | |
from utils.torch_utils import torch_distributed_zero_first | |
# Parameters | |
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' | |
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes | |
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes | |
logger = logging.getLogger(__name__) | |
# Get orientation exif tag | |
for orientation in ExifTags.TAGS.keys(): | |
if ExifTags.TAGS[orientation] == 'Orientation': | |
break | |
def get_hash(files): | |
# Returns a single hash value of a list of files | |
return sum(os.path.getsize(f) for f in files if os.path.isfile(f)) | |
def exif_size(img): | |
# Returns exif-corrected PIL size | |
s = img.size # (width, height) | |
try: | |
rotation = dict(img._getexif().items())[orientation] | |
if rotation == 6: # rotation 270 | |
s = (s[1], s[0]) | |
elif rotation == 8: # rotation 90 | |
s = (s[1], s[0]) | |
except: | |
pass | |
return s | |
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, | |
rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''): | |
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache | |
with torch_distributed_zero_first(rank): | |
dataset = LoadImagesAndLabels(path, imgsz, batch_size, | |
augment=augment, # augment images | |
hyp=hyp, # augmentation hyperparameters | |
rect=rect, # rectangular training | |
cache_images=cache, | |
single_cls=opt.single_cls, | |
stride=int(stride), | |
pad=pad, | |
image_weights=image_weights, | |
prefix=prefix) | |
batch_size = min(batch_size, len(dataset)) | |
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers | |
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None | |
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader | |
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader() | |
dataloader = loader(dataset, | |
batch_size=batch_size, | |
num_workers=nw, | |
sampler=sampler, | |
pin_memory=True, | |
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn) | |
return dataloader, dataset | |
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): | |
""" Dataloader that reuses workers | |
Uses same syntax as vanilla DataLoader | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) | |
self.iterator = super().__iter__() | |
def __len__(self): | |
return len(self.batch_sampler.sampler) | |
def __iter__(self): | |
for i in range(len(self)): | |
yield next(self.iterator) | |
class _RepeatSampler(object): | |
""" Sampler that repeats forever | |
Args: | |
sampler (Sampler) | |
""" | |
def __init__(self, sampler): | |
self.sampler = sampler | |
def __iter__(self): | |
while True: | |
yield from iter(self.sampler) | |
class LoadImages: # for inference | |
def __init__(self, path, img_size=640, stride=32): | |
p = str(Path(path).absolute()) # os-agnostic absolute path | |
if '*' in p: | |
files = sorted(glob.glob(p, recursive=True)) # glob | |
elif os.path.isdir(p): | |
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir | |
elif os.path.isfile(p): | |
files = [p] # files | |
else: | |
raise Exception(f'ERROR: {p} does not exist') | |
images = [x for x in files if x.split('.')[-1].lower() in img_formats] | |
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] | |
ni, nv = len(images), len(videos) | |
self.img_size = img_size | |
self.stride = stride | |
self.files = images + videos | |
self.nf = ni + nv # number of files | |
self.video_flag = [False] * ni + [True] * nv | |
self.mode = 'image' | |
if any(videos): | |
self.new_video(videos[0]) # new video | |
else: | |
self.cap = None | |
assert self.nf > 0, f'No images or videos found in {p}. ' \ | |
f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' | |
def __iter__(self): | |
self.count = 0 | |
return self | |
def __next__(self): | |
if self.count == self.nf: | |
raise StopIteration | |
path = self.files[self.count] | |
if self.video_flag[self.count]: | |
# Read video | |
self.mode = 'video' | |
ret_val, img0 = self.cap.read() | |
if not ret_val: | |
self.count += 1 | |
self.cap.release() | |
if self.count == self.nf: # last video | |
raise StopIteration | |
else: | |
path = self.files[self.count] | |
self.new_video(path) | |
ret_val, img0 = self.cap.read() | |
self.frame += 1 | |
print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='') | |
else: | |
# Read image | |
self.count += 1 | |
img0 = cv2.imread(path) # BGR | |
assert img0 is not None, 'Image Not Found ' + path | |
#print(f'image {self.count}/{self.nf} {path}: ', end='') | |
# Padded resize | |
img = letterbox(img0, self.img_size, stride=self.stride)[0] | |
# Convert | |
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |
img = np.ascontiguousarray(img) | |
return path, img, img0, self.cap | |
def new_video(self, path): | |
self.frame = 0 | |
self.cap = cv2.VideoCapture(path) | |
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
def __len__(self): | |
return self.nf # number of files | |
class LoadWebcam: # for inference | |
def __init__(self, pipe='0', img_size=640, stride=32): | |
self.img_size = img_size | |
self.stride = stride | |
if pipe.isnumeric(): | |
pipe = eval(pipe) # local camera | |
# pipe = 'rtsp://192.168.1.64/1' # IP camera | |
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login | |
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera | |
self.pipe = pipe | |
self.cap = cv2.VideoCapture(pipe) # video capture object | |
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size | |
def __iter__(self): | |
self.count = -1 | |
return self | |
def __next__(self): | |
self.count += 1 | |
if cv2.waitKey(1) == ord('q'): # q to quit | |
self.cap.release() | |
cv2.destroyAllWindows() | |
raise StopIteration | |
# Read frame | |
if self.pipe == 0: # local camera | |
ret_val, img0 = self.cap.read() | |
img0 = cv2.flip(img0, 1) # flip left-right | |
else: # IP camera | |
n = 0 | |
while True: | |
n += 1 | |
self.cap.grab() | |
if n % 30 == 0: # skip frames | |
ret_val, img0 = self.cap.retrieve() | |
if ret_val: | |
break | |
assert ret_val, f'Camera Error {self.pipe}' | |
img_path = 'webcam.jpg' | |
print(f'webcam {self.count}: ', end='') | |
# Padded resize | |
img = letterbox(img0, self.img_size, stride=self.stride)[0] | |
# Convert | |
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |
img = np.ascontiguousarray(img) | |
return img_path, img, img0, None | |
def __len__(self): | |
return 0 | |
class LoadStreams: # multiple IP or RTSP cameras | |
def __init__(self, sources='streams.txt', img_size=640, stride=32): | |
self.mode = 'stream' | |
self.img_size = img_size | |
self.stride = stride | |
if os.path.isfile(sources): | |
with open(sources, 'r') as f: | |
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] | |
else: | |
sources = [sources] | |
n = len(sources) | |
self.imgs = [None] * n | |
self.sources = [clean_str(x) for x in sources] # clean source names for later | |
for i, s in enumerate(sources): | |
# Start the thread to read frames from the video stream | |
print(f'{i + 1}/{n}: {s}... ', end='') | |
url = eval(s) if s.isnumeric() else s | |
if 'youtube.com/' in str(url) or 'youtu.be/' in str(url): # if source is YouTube video | |
check_requirements(('pafy', 'youtube_dl')) | |
import pafy | |
url = pafy.new(url).getbest(preftype="mp4").url | |
cap = cv2.VideoCapture(url) | |
assert cap.isOpened(), f'Failed to open {s}' | |
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
self.fps = cap.get(cv2.CAP_PROP_FPS) % 100 | |
_, self.imgs[i] = cap.read() # guarantee first frame | |
thread = Thread(target=self.update, args=([i, cap]), daemon=True) | |
print(f' success ({w}x{h} at {self.fps:.2f} FPS).') | |
thread.start() | |
print('') # newline | |
# check for common shapes | |
s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes | |
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal | |
if not self.rect: | |
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') | |
def update(self, index, cap): | |
# Read next stream frame in a daemon thread | |
n = 0 | |
while cap.isOpened(): | |
n += 1 | |
# _, self.imgs[index] = cap.read() | |
cap.grab() | |
if n == 4: # read every 4th frame | |
success, im = cap.retrieve() | |
self.imgs[index] = im if success else self.imgs[index] * 0 | |
n = 0 | |
time.sleep(1 / self.fps) # wait time | |
def __iter__(self): | |
self.count = -1 | |
return self | |
def __next__(self): | |
self.count += 1 | |
img0 = self.imgs.copy() | |
if cv2.waitKey(1) == ord('q'): # q to quit | |
cv2.destroyAllWindows() | |
raise StopIteration | |
# Letterbox | |
img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0] | |
# Stack | |
img = np.stack(img, 0) | |
# Convert | |
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416 | |
img = np.ascontiguousarray(img) | |
return self.sources, img, img0, None | |
def __len__(self): | |
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years | |
def img2label_paths(img_paths): | |
# Define label paths as a function of image paths | |
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings | |
return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths] | |
class LoadImagesAndLabels(Dataset): # for training/testing | |
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, | |
cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): | |
self.img_size = img_size | |
self.augment = augment | |
self.hyp = hyp | |
self.image_weights = image_weights | |
self.rect = False if image_weights else rect | |
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) | |
self.mosaic_border = [-img_size // 2, -img_size // 2] | |
self.stride = stride | |
self.path = path | |
#self.albumentations = Albumentations() if augment else None | |
try: | |
f = [] # image files | |
for p in path if isinstance(path, list) else [path]: | |
p = Path(p) # os-agnostic | |
if p.is_dir(): # dir | |
f += glob.glob(str(p / '**' / '*.*'), recursive=True) | |
# f = list(p.rglob('**/*.*')) # pathlib | |
elif p.is_file(): # file | |
with open(p, 'r') as t: | |
t = t.read().strip().splitlines() | |
parent = str(p.parent) + os.sep | |
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path | |
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) | |
else: | |
raise Exception(f'{prefix}{p} does not exist') | |
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) | |
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib | |
assert self.img_files, f'{prefix}No images found' | |
except Exception as e: | |
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}') | |
# Check cache | |
self.label_files = img2label_paths(self.img_files) # labels | |
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels | |
if cache_path.is_file(): | |
cache, exists = torch.load(cache_path), True # load | |
#if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed | |
# cache, exists = self.cache_labels(cache_path, prefix), False # re-cache | |
else: | |
cache, exists = self.cache_labels(cache_path, prefix), False # cache | |
# Display cache | |
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total | |
if exists: | |
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" | |
tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results | |
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}' | |
# Read cache | |
cache.pop('hash') # remove hash | |
cache.pop('version') # remove version | |
labels, shapes, self.segments = zip(*cache.values()) | |
self.labels = list(labels) | |
self.shapes = np.array(shapes, dtype=np.float64) | |
self.img_files = list(cache.keys()) # update | |
self.label_files = img2label_paths(cache.keys()) # update | |
if single_cls: | |
for x in self.labels: | |
x[:, 0] = 0 | |
n = len(shapes) # number of images | |
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index | |
nb = bi[-1] + 1 # number of batches | |
self.batch = bi # batch index of image | |
self.n = n | |
self.indices = range(n) | |
# Rectangular Training | |
if self.rect: | |
# Sort by aspect ratio | |
s = self.shapes # wh | |
ar = s[:, 1] / s[:, 0] # aspect ratio | |
irect = ar.argsort() | |
self.img_files = [self.img_files[i] for i in irect] | |
self.label_files = [self.label_files[i] for i in irect] | |
self.labels = [self.labels[i] for i in irect] | |
self.shapes = s[irect] # wh | |
ar = ar[irect] | |
# Set training image shapes | |
shapes = [[1, 1]] * nb | |
for i in range(nb): | |
ari = ar[bi == i] | |
mini, maxi = ari.min(), ari.max() | |
if maxi < 1: | |
shapes[i] = [maxi, 1] | |
elif mini > 1: | |
shapes[i] = [1, 1 / mini] | |
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride | |
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) | |
self.imgs = [None] * n | |
if cache_images: | |
if cache_images == 'disk': | |
self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy') | |
self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files] | |
self.im_cache_dir.mkdir(parents=True, exist_ok=True) | |
gb = 0 # Gigabytes of cached images | |
self.img_hw0, self.img_hw = [None] * n, [None] * n | |
results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) | |
pbar = tqdm(enumerate(results), total=n) | |
for i, x in pbar: | |
if cache_images == 'disk': | |
if not self.img_npy[i].exists(): | |
np.save(self.img_npy[i].as_posix(), x[0]) | |
gb += self.img_npy[i].stat().st_size | |
else: | |
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x | |
gb += self.imgs[i].nbytes | |
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)' | |
pbar.close() | |
def cache_labels(self, path=Path('./labels.cache'), prefix=''): | |
# Cache dataset labels, check images and read shapes | |
x = {} # dict | |
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate | |
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files)) | |
for i, (im_file, lb_file) in enumerate(pbar): | |
try: | |
# verify images | |
im = Image.open(im_file) | |
im.verify() # PIL verify | |
shape = exif_size(im) # image size | |
segments = [] # instance segments | |
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' | |
assert im.format.lower() in img_formats, f'invalid image format {im.format}' | |
# verify labels | |
if os.path.isfile(lb_file): | |
nf += 1 # label found | |
with open(lb_file, 'r') as f: | |
l = [x.split() for x in f.read().strip().splitlines()] | |
if any([len(x) > 8 for x in l]): # is segment | |
classes = np.array([x[0] for x in l], dtype=np.float32) | |
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...) | |
l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) | |
l = np.array(l, dtype=np.float32) | |
if len(l): | |
assert l.shape[1] == 5, 'labels require 5 columns each' | |
assert (l >= 0).all(), 'negative labels' | |
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels' | |
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels' | |
else: | |
ne += 1 # label empty | |
l = np.zeros((0, 5), dtype=np.float32) | |
else: | |
nm += 1 # label missing | |
l = np.zeros((0, 5), dtype=np.float32) | |
x[im_file] = [l, shape, segments] | |
except Exception as e: | |
nc += 1 | |
print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}') | |
pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \ | |
f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted" | |
pbar.close() | |
if nf == 0: | |
print(f'{prefix}WARNING: No labels found in {path}. See {help_url}') | |
x['hash'] = get_hash(self.label_files + self.img_files) | |
x['results'] = nf, nm, ne, nc, i + 1 | |
x['version'] = 0.1 # cache version | |
torch.save(x, path) # save for next time | |
logging.info(f'{prefix}New cache created: {path}') | |
return x | |
def __len__(self): | |
return len(self.img_files) | |
# def __iter__(self): | |
# self.count = -1 | |
# print('ran dataset iter') | |
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) | |
# return self | |
def __getitem__(self, index): | |
index = self.indices[index] # linear, shuffled, or image_weights | |
hyp = self.hyp | |
mosaic = self.mosaic and random.random() < hyp['mosaic'] | |
if mosaic: | |
# Load mosaic | |
if random.random() < 0.8: | |
img, labels = load_mosaic(self, index) | |
else: | |
img, labels = load_mosaic9(self, index) | |
shapes = None | |
# MixUp https://arxiv.org/pdf/1710.09412.pdf | |
if random.random() < hyp['mixup']: | |
if random.random() < 0.8: | |
img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1)) | |
else: | |
img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1)) | |
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0 | |
img = (img * r + img2 * (1 - r)).astype(np.uint8) | |
labels = np.concatenate((labels, labels2), 0) | |
else: | |
# Load image | |
img, (h0, w0), (h, w) = load_image(self, index) | |
# Letterbox | |
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape | |
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) | |
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling | |
labels = self.labels[index].copy() | |
if labels.size: # normalized xywh to pixel xyxy format | |
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) | |
if self.augment: | |
# Augment imagespace | |
if not mosaic: | |
img, labels = random_perspective(img, labels, | |
degrees=hyp['degrees'], | |
translate=hyp['translate'], | |
scale=hyp['scale'], | |
shear=hyp['shear'], | |
perspective=hyp['perspective']) | |
#img, labels = self.albumentations(img, labels) | |
# Augment colorspace | |
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) | |
# Apply cutouts | |
# if random.random() < 0.9: | |
# labels = cutout(img, labels) | |
if random.random() < hyp['paste_in']: | |
sample_labels, sample_images, sample_masks = [], [], [] | |
while len(sample_labels) < 30: | |
sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1)) | |
sample_labels += sample_labels_ | |
sample_images += sample_images_ | |
sample_masks += sample_masks_ | |
#print(len(sample_labels)) | |
if len(sample_labels) == 0: | |
break | |
labels = pastein(img, labels, sample_labels, sample_images, sample_masks) | |
nL = len(labels) # number of labels | |
if nL: | |
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh | |
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1 | |
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1 | |
if self.augment: | |
# flip up-down | |
if random.random() < hyp['flipud']: | |
img = np.flipud(img) | |
if nL: | |
labels[:, 2] = 1 - labels[:, 2] | |
# flip left-right | |
if random.random() < hyp['fliplr']: | |
img = np.fliplr(img) | |
if nL: | |
labels[:, 1] = 1 - labels[:, 1] | |
labels_out = torch.zeros((nL, 6)) | |
if nL: | |
labels_out[:, 1:] = torch.from_numpy(labels) | |
# Convert | |
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |
img = np.ascontiguousarray(img) | |
return torch.from_numpy(img), labels_out, self.img_files[index], shapes | |
def collate_fn(batch): | |
img, label, path, shapes = zip(*batch) # transposed | |
for i, l in enumerate(label): | |
l[:, 0] = i # add target image index for build_targets() | |
return torch.stack(img, 0), torch.cat(label, 0), path, shapes | |
def collate_fn4(batch): | |
img, label, path, shapes = zip(*batch) # transposed | |
n = len(shapes) // 4 | |
img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] | |
ho = torch.tensor([[0., 0, 0, 1, 0, 0]]) | |
wo = torch.tensor([[0., 0, 1, 0, 0, 0]]) | |
s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale | |
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW | |
i *= 4 | |
if random.random() < 0.5: | |
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[ | |
0].type(img[i].type()) | |
l = label[i] | |
else: | |
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) | |
l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s | |
img4.append(im) | |
label4.append(l) | |
for i, l in enumerate(label4): | |
l[:, 0] = i # add target image index for build_targets() | |
return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 | |
# Ancillary functions -------------------------------------------------------------------------------------------------- | |
def load_image(self, index): | |
# loads 1 image from dataset, returns img, original hw, resized hw | |
img = self.imgs[index] | |
if img is None: # not cached | |
path = self.img_files[index] | |
img = cv2.imread(path) # BGR | |
assert img is not None, 'Image Not Found ' + path | |
h0, w0 = img.shape[:2] # orig hw | |
r = self.img_size / max(h0, w0) # resize image to img_size | |
if r != 1: # always resize down, only resize up if training with augmentation | |
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR | |
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) | |
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized | |
else: | |
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized | |
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): | |
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains | |
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) | |
dtype = img.dtype # uint8 | |
x = np.arange(0, 256, dtype=np.int16) | |
lut_hue = ((x * r[0]) % 180).astype(dtype) | |
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) | |
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) | |
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) | |
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed | |
def hist_equalize(img, clahe=True, bgr=False): | |
# Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255 | |
yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) | |
if clahe: | |
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) | |
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) | |
else: | |
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram | |
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB | |
def load_mosaic(self, index): | |
# loads images in a 4-mosaic | |
labels4, segments4 = [], [] | |
s = self.img_size | |
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y | |
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices | |
for i, index in enumerate(indices): | |
# Load image | |
img, _, (h, w) = load_image(self, index) | |
# place img in img4 | |
if i == 0: # top left | |
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) | |
elif i == 1: # top right | |
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc | |
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h | |
elif i == 2: # bottom left | |
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) | |
elif i == 3: # bottom right | |
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) | |
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] | |
padw = x1a - x1b | |
padh = y1a - y1b | |
# Labels | |
labels, segments = self.labels[index].copy(), self.segments[index].copy() | |
if labels.size: | |
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format | |
segments = [xyn2xy(x, w, h, padw, padh) for x in segments] | |
labels4.append(labels) | |
segments4.extend(segments) | |
# Concat/clip labels | |
labels4 = np.concatenate(labels4, 0) | |
for x in (labels4[:, 1:], *segments4): | |
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() | |
# img4, labels4 = replicate(img4, labels4) # replicate | |
# Augment | |
#img4, labels4, segments4 = remove_background(img4, labels4, segments4) | |
#sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste']) | |
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste']) | |
img4, labels4 = random_perspective(img4, labels4, segments4, | |
degrees=self.hyp['degrees'], | |
translate=self.hyp['translate'], | |
scale=self.hyp['scale'], | |
shear=self.hyp['shear'], | |
perspective=self.hyp['perspective'], | |
border=self.mosaic_border) # border to remove | |
return img4, labels4 | |
def load_mosaic9(self, index): | |
# loads images in a 9-mosaic | |
labels9, segments9 = [], [] | |
s = self.img_size | |
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices | |
for i, index in enumerate(indices): | |
# Load image | |
img, _, (h, w) = load_image(self, index) | |
# place img in img9 | |
if i == 0: # center | |
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
h0, w0 = h, w | |
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates | |
elif i == 1: # top | |
c = s, s - h, s + w, s | |
elif i == 2: # top right | |
c = s + wp, s - h, s + wp + w, s | |
elif i == 3: # right | |
c = s + w0, s, s + w0 + w, s + h | |
elif i == 4: # bottom right | |
c = s + w0, s + hp, s + w0 + w, s + hp + h | |
elif i == 5: # bottom | |
c = s + w0 - w, s + h0, s + w0, s + h0 + h | |
elif i == 6: # bottom left | |
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h | |
elif i == 7: # left | |
c = s - w, s + h0 - h, s, s + h0 | |
elif i == 8: # top left | |
c = s - w, s + h0 - hp - h, s, s + h0 - hp | |
padx, pady = c[:2] | |
x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords | |
# Labels | |
labels, segments = self.labels[index].copy(), self.segments[index].copy() | |
if labels.size: | |
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format | |
segments = [xyn2xy(x, w, h, padx, pady) for x in segments] | |
labels9.append(labels) | |
segments9.extend(segments) | |
# Image | |
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] | |
hp, wp = h, w # height, width previous | |
# Offset | |
yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y | |
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] | |
# Concat/clip labels | |
labels9 = np.concatenate(labels9, 0) | |
labels9[:, [1, 3]] -= xc | |
labels9[:, [2, 4]] -= yc | |
c = np.array([xc, yc]) # centers | |
segments9 = [x - c for x in segments9] | |
for x in (labels9[:, 1:], *segments9): | |
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() | |
# img9, labels9 = replicate(img9, labels9) # replicate | |
# Augment | |
#img9, labels9, segments9 = remove_background(img9, labels9, segments9) | |
img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste']) | |
img9, labels9 = random_perspective(img9, labels9, segments9, | |
degrees=self.hyp['degrees'], | |
translate=self.hyp['translate'], | |
scale=self.hyp['scale'], | |
shear=self.hyp['shear'], | |
perspective=self.hyp['perspective'], | |
border=self.mosaic_border) # border to remove | |
return img9, labels9 | |
def load_samples(self, index): | |
# loads images in a 4-mosaic | |
labels4, segments4 = [], [] | |
s = self.img_size | |
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y | |
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices | |
for i, index in enumerate(indices): | |
# Load image | |
img, _, (h, w) = load_image(self, index) | |
# place img in img4 | |
if i == 0: # top left | |
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) | |
elif i == 1: # top right | |
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc | |
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h | |
elif i == 2: # bottom left | |
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) | |
elif i == 3: # bottom right | |
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) | |
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] | |
padw = x1a - x1b | |
padh = y1a - y1b | |
# Labels | |
labels, segments = self.labels[index].copy(), self.segments[index].copy() | |
if labels.size: | |
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format | |
segments = [xyn2xy(x, w, h, padw, padh) for x in segments] | |
labels4.append(labels) | |
segments4.extend(segments) | |
# Concat/clip labels | |
labels4 = np.concatenate(labels4, 0) | |
for x in (labels4[:, 1:], *segments4): | |
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() | |
# img4, labels4 = replicate(img4, labels4) # replicate | |
# Augment | |
#img4, labels4, segments4 = remove_background(img4, labels4, segments4) | |
sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5) | |
return sample_labels, sample_images, sample_masks | |
def copy_paste(img, labels, segments, probability=0.5): | |
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) | |
n = len(segments) | |
if probability and n: | |
h, w, c = img.shape # height, width, channels | |
im_new = np.zeros(img.shape, np.uint8) | |
for j in random.sample(range(n), k=round(probability * n)): | |
l, s = labels[j], segments[j] | |
box = w - l[3], l[2], w - l[1], l[4] | |
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area | |
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels | |
labels = np.concatenate((labels, [[l[0], *box]]), 0) | |
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) | |
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) | |
result = cv2.bitwise_and(src1=img, src2=im_new) | |
result = cv2.flip(result, 1) # augment segments (flip left-right) | |
i = result > 0 # pixels to replace | |
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch | |
img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug | |
return img, labels, segments | |
def remove_background(img, labels, segments): | |
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) | |
n = len(segments) | |
h, w, c = img.shape # height, width, channels | |
im_new = np.zeros(img.shape, np.uint8) | |
img_new = np.ones(img.shape, np.uint8) * 114 | |
for j in range(n): | |
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) | |
result = cv2.bitwise_and(src1=img, src2=im_new) | |
i = result > 0 # pixels to replace | |
img_new[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug | |
return img_new, labels, segments | |
def sample_segments(img, labels, segments, probability=0.5): | |
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) | |
n = len(segments) | |
sample_labels = [] | |
sample_images = [] | |
sample_masks = [] | |
if probability and n: | |
h, w, c = img.shape # height, width, channels | |
for j in random.sample(range(n), k=round(probability * n)): | |
l, s = labels[j], segments[j] | |
box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1) | |
#print(box) | |
if (box[2] <= box[0]) or (box[3] <= box[1]): | |
continue | |
sample_labels.append(l[0]) | |
mask = np.zeros(img.shape, np.uint8) | |
cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) | |
sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:]) | |
result = cv2.bitwise_and(src1=img, src2=mask) | |
i = result > 0 # pixels to replace | |
mask[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug | |
#print(box) | |
sample_images.append(mask[box[1]:box[3],box[0]:box[2],:]) | |
return sample_labels, sample_images, sample_masks | |
def replicate(img, labels): | |
# Replicate labels | |
h, w = img.shape[:2] | |
boxes = labels[:, 1:].astype(int) | |
x1, y1, x2, y2 = boxes.T | |
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) | |
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices | |
x1b, y1b, x2b, y2b = boxes[i] | |
bh, bw = y2b - y1b, x2b - x1b | |
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y | |
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] | |
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] | |
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) | |
return img, labels | |
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): | |
# Resize and pad image while meeting stride-multiple constraints | |
shape = img.shape[:2] # current shape [height, width] | |
if isinstance(new_shape, int): | |
new_shape = (new_shape, new_shape) | |
# Scale ratio (new / old) | |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
if not scaleup: # only scale down, do not scale up (for better test mAP) | |
r = min(r, 1.0) | |
# Compute padding | |
ratio = r, r # width, height ratios | |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding | |
if auto: # minimum rectangle | |
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding | |
elif scaleFill: # stretch | |
dw, dh = 0.0, 0.0 | |
new_unpad = (new_shape[1], new_shape[0]) | |
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios | |
dw /= 2 # divide padding into 2 sides | |
dh /= 2 | |
if shape[::-1] != new_unpad: # resize | |
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) | |
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) | |
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border | |
return img, ratio, (dw, dh) | |
def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, | |
border=(0, 0)): | |
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) | |
# targets = [cls, xyxy] | |
height = img.shape[0] + border[0] * 2 # shape(h,w,c) | |
width = img.shape[1] + border[1] * 2 | |
# Center | |
C = np.eye(3) | |
C[0, 2] = -img.shape[1] / 2 # x translation (pixels) | |
C[1, 2] = -img.shape[0] / 2 # y translation (pixels) | |
# Perspective | |
P = np.eye(3) | |
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) | |
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) | |
# Rotation and Scale | |
R = np.eye(3) | |
a = random.uniform(-degrees, degrees) | |
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations | |
s = random.uniform(1 - scale, 1.1 + scale) | |
# s = 2 ** random.uniform(-scale, scale) | |
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) | |
# Shear | |
S = np.eye(3) | |
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) | |
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) | |
# Translation | |
T = np.eye(3) | |
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) | |
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) | |
# Combined rotation matrix | |
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT | |
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed | |
if perspective: | |
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) | |
else: # affine | |
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) | |
# Visualize | |
# import matplotlib.pyplot as plt | |
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() | |
# ax[0].imshow(img[:, :, ::-1]) # base | |
# ax[1].imshow(img2[:, :, ::-1]) # warped | |
# Transform label coordinates | |
n = len(targets) | |
if n: | |
use_segments = any(x.any() for x in segments) | |
new = np.zeros((n, 4)) | |
if use_segments: # warp segments | |
segments = resample_segments(segments) # upsample | |
for i, segment in enumerate(segments): | |
xy = np.ones((len(segment), 3)) | |
xy[:, :2] = segment | |
xy = xy @ M.T # transform | |
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine | |
# clip | |
new[i] = segment2box(xy, width, height) | |
else: # warp boxes | |
xy = np.ones((n * 4, 3)) | |
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 | |
xy = xy @ M.T # transform | |
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine | |
# create new boxes | |
x = xy[:, [0, 2, 4, 6]] | |
y = xy[:, [1, 3, 5, 7]] | |
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T | |
# clip | |
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) | |
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) | |
# filter candidates | |
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) | |
targets = targets[i] | |
targets[:, 1:5] = new[i] | |
return img, targets | |
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) | |
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio | |
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] | |
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] | |
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio | |
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates | |
def bbox_ioa(box1, box2): | |
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2 | |
box2 = box2.transpose() | |
# Get the coordinates of bounding boxes | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] | |
# Intersection area | |
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ | |
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) | |
# box2 area | |
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 | |
# Intersection over box2 area | |
return inter_area / box2_area | |
def cutout(image, labels): | |
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552 | |
h, w = image.shape[:2] | |
# create random masks | |
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction | |
for s in scales: | |
mask_h = random.randint(1, int(h * s)) | |
mask_w = random.randint(1, int(w * s)) | |
# box | |
xmin = max(0, random.randint(0, w) - mask_w // 2) | |
ymin = max(0, random.randint(0, h) - mask_h // 2) | |
xmax = min(w, xmin + mask_w) | |
ymax = min(h, ymin + mask_h) | |
# apply random color mask | |
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] | |
# return unobscured labels | |
if len(labels) and s > 0.03: | |
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) | |
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area | |
labels = labels[ioa < 0.60] # remove >60% obscured labels | |
return labels | |
def pastein(image, labels, sample_labels, sample_images, sample_masks): | |
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552 | |
h, w = image.shape[:2] | |
# create random masks | |
scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6 # image size fraction | |
for s in scales: | |
if random.random() < 0.2: | |
continue | |
mask_h = random.randint(1, int(h * s)) | |
mask_w = random.randint(1, int(w * s)) | |
# box | |
xmin = max(0, random.randint(0, w) - mask_w // 2) | |
ymin = max(0, random.randint(0, h) - mask_h // 2) | |
xmax = min(w, xmin + mask_w) | |
ymax = min(h, ymin + mask_h) | |
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) | |
if len(labels): | |
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area | |
else: | |
ioa = np.zeros(1) | |
if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20): # allow 30% obscuration of existing labels | |
sel_ind = random.randint(0, len(sample_labels)-1) | |
#print(len(sample_labels)) | |
#print(sel_ind) | |
#print((xmax-xmin, ymax-ymin)) | |
#print(image[ymin:ymax, xmin:xmax].shape) | |
#print([[sample_labels[sel_ind], *box]]) | |
#print(labels.shape) | |
hs, ws, cs = sample_images[sel_ind].shape | |
r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws) | |
r_w = int(ws*r_scale) | |
r_h = int(hs*r_scale) | |
if (r_w > 10) and (r_h > 10): | |
r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h)) | |
r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h)) | |
temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w] | |
m_ind = r_mask > 0 | |
if m_ind.astype(np.int).sum() > 60: | |
temp_crop[m_ind] = r_image[m_ind] | |
#print(sample_labels[sel_ind]) | |
#print(sample_images[sel_ind].shape) | |
#print(temp_crop.shape) | |
box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32) | |
if len(labels): | |
labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0) | |
else: | |
labels = np.array([[sample_labels[sel_ind], *box]]) | |
image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop | |
return labels | |
class Albumentations: | |
# YOLOv5 Albumentations class (optional, only used if package is installed) | |
def __init__(self): | |
self.transform = None | |
import albumentations as A | |
self.transform = A.Compose([ | |
A.CLAHE(p=0.01), | |
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01), | |
A.RandomGamma(gamma_limit=[80, 120], p=0.01), | |
A.Blur(p=0.01), | |
A.MedianBlur(p=0.01), | |
A.ToGray(p=0.01), | |
A.ImageCompression(quality_lower=75, p=0.01),], | |
bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels'])) | |
#logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p)) | |
def __call__(self, im, labels, p=1.0): | |
if self.transform and random.random() < p: | |
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed | |
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) | |
return im, labels | |
def create_folder(path='./new'): | |
# Create folder | |
if os.path.exists(path): | |
shutil.rmtree(path) # delete output folder | |
os.makedirs(path) # make new output folder | |
def flatten_recursive(path='../coco'): | |
# Flatten a recursive directory by bringing all files to top level | |
new_path = Path(path + '_flat') | |
create_folder(new_path) | |
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): | |
shutil.copyfile(file, new_path / Path(file).name) | |
def extract_boxes(path='../coco/'): # from utils.datasets import *; extract_boxes('../coco128') | |
# Convert detection dataset into classification dataset, with one directory per class | |
path = Path(path) # images dir | |
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing | |
files = list(path.rglob('*.*')) | |
n = len(files) # number of files | |
for im_file in tqdm(files, total=n): | |
if im_file.suffix[1:] in img_formats: | |
# image | |
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB | |
h, w = im.shape[:2] | |
# labels | |
lb_file = Path(img2label_paths([str(im_file)])[0]) | |
if Path(lb_file).exists(): | |
with open(lb_file, 'r') as f: | |
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels | |
for j, x in enumerate(lb): | |
c = int(x[0]) # class | |
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename | |
if not f.parent.is_dir(): | |
f.parent.mkdir(parents=True) | |
b = x[1:] * [w, h, w, h] # box | |
# b[2:] = b[2:].max() # rectangle to square | |
b[2:] = b[2:] * 1.2 + 3 # pad | |
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) | |
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image | |
b[[1, 3]] = np.clip(b[[1, 3]], 0, h) | |
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' | |
def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False): | |
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files | |
Usage: from utils.datasets import *; autosplit('../coco') | |
Arguments | |
path: Path to images directory | |
weights: Train, val, test weights (list) | |
annotated_only: Only use images with an annotated txt file | |
""" | |
path = Path(path) # images dir | |
files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only | |
n = len(files) # number of files | |
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split | |
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files | |
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing | |
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) | |
for i, img in tqdm(zip(indices, files), total=n): | |
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label | |
with open(path / txt[i], 'a') as f: | |
f.write(str(img) + '\n') # add image to txt file | |
def load_segmentations(self, index): | |
key = '/work/handsomejw66/coco17/' + self.img_files[index] | |
#print(key) | |
# /work/handsomejw66/coco17/ | |
return self.segs[key] | |