fialProject3 / app.py
shriarul5273's picture
Added FPS
dd13bc1
raw
history blame
7.85 kB
import torch
import gradio as gr
import cv2
import numpy as np
import random
import numpy as np
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, \
scale_coords
from utils.plots import plot_one_box
from utils.torch_utils import time_synchronized
import time
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, r, (dw, dh)
names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
def detect(img,model,device,iou_threshold=0.45,confidence_threshold=0.25):
imgsz = 640
img = np.array(img)
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# Run inference
imgs = img.copy() # for NMS
image, ratio, dwdh = letterbox(img, auto=False)
image = image.transpose((2, 0, 1))
img = torch.from_numpy(image).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
start = time.time()
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
pred = model(img,augment=True)[0]
fps_inference = 1/(time.time()-start)
t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, confidence_threshold, iou_threshold, classes=None, agnostic=True)
t3 = time_synchronized()
for i, det in enumerate(pred): # detections per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], imgs.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, imgs, label=label, color=colors[int(cls)], line_thickness=2)
return imgs,fps_inference
def inference(img,model_link,iou_threshold,confidence_threshold):
print(model_link)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Load model
model_path = 'weights/'+str(model_link)+'.pt'
model = attempt_load(model_path, map_location=device)
return detect(img,model,device,iou_threshold,confidence_threshold)
def inference2(video,model_link,iou_threshold,confidence_threshold):
print(model_link)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Load model
model_path = 'weights/'+str(model_link)+'.pt'
model = attempt_load(model_path, map_location=device)
frames = cv2.VideoCapture(video)
fps = frames.get(cv2.CAP_PROP_FPS)
image_size = (int(frames.get(cv2.CAP_PROP_FRAME_WIDTH)),int(frames.get(cv2.CAP_PROP_FRAME_HEIGHT)))
finalVideo = cv2.VideoWriter('output.mp4',cv2.VideoWriter_fourcc(*'VP90'), fps, image_size)
fps_video = []
while frames.isOpened():
ret,frame = frames.read()
if not ret:
break
frame,fps = detect(frame,model,device,iou_threshold,confidence_threshold)
fps_video.append[fps]
finalVideo.write(frame)
frames.release()
finalVideo.release()
return 'output.mp4',np.mean(fps_video)
examples_images = ['data/images/horses.jpg',
'data/images/bus.jpg',
'data/images/zidane.jpg']
examples_videos = ['data/video/input_0.mp4','data/video/input_1.mp4']
models = ['yolov7','yolov7x','yolov7-w6','yolov7-d6','yolov7-e6e']
with gr.Blocks() as demo:
gr.Markdown("## YOLOv7 Inference")
with gr.Tab("Image"):
gr.Markdown("## YOLOv7 Inference on Image")
with gr.Row():
image_input = gr.Image(type='pil', label="Input Image", source="upload")
image_output = gr.Image(type='pil', label="Output Image", source="upload")
fps_image = gr.Number(0,label='FPS')
image_drop = gr.Dropdown(choices=models,value=models[0])
image_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
image_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
gr.Examples(examples=examples_images,inputs=image_input,outputs=image_output)
text_button = gr.Button("Detect")
with gr.Tab("Video"):
gr.Markdown("## YOLOv7 Inference on Video")
with gr.Row():
video_input = gr.Video(type='pil', label="Input Image", source="upload")
video_output = gr.Video(type="pil", label="Output Image",format="mp4")
fps_video = gr.Number(0,label='FPS')
video_drop = gr.Dropdown(choices=models,value=models[0])
video_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
video_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
gr.Examples(examples=examples_videos,inputs=video_input,outputs=video_output)
video_button = gr.Button("Detect")
with gr.Tab("Webcam Video"):
gr.Markdown("## YOLOv7 Inference on Webcam Video")
gr.Markdown("Coming Soon")
text_button.click(inference, inputs=[image_input,image_drop,
image_iou_threshold,image_conf_threshold],
outputs=[image_output,fps_image])
video_button.click(inference2, inputs=[video_input,video_drop,
video_iou_threshold,video_conf_threshold],
outputs=[video_output,fps_video])
demo.launch()