openvino_notebooks / qachatbot.py
malvika2003's picture
Update qachatbot.py
90b7b96 verified
raw
history blame
3.89 kB
import gradio as gr
from transformers import pipeline, AutoTokenizer
# Define examples and model configuration
examples = [
"Give me a recipe for pizza with pineapple",
"Write me a tweet about the new OpenVINO release",
"Explain the difference between CPU and GPU",
"Give five ideas for a great weekend with family",
"Do Androids dream of Electric sheep?",
"Who is Dolly?",
"Please give me advice on how to write resume?",
"Name 3 advantages to being a cat",
"Write instructions on how to become a good AI engineer",
"Write a love letter to my best friend",
]
# Define the model and its tokenizer
model_name = "susnato/phi-2" # Replace with your actual model identifier
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model_name, tokenizer=tokenizer)
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens, performance):
prompt = f"Instruct:{user_text}\nOutput:"
response = generator(prompt, max_length=max_new_tokens, top_p=top_p, temperature=temperature, top_k=top_k)[0]["generated_text"]
return response, "N/A" # Replace "N/A" with actual performance metrics if available
def reset_textbox(*args):
return "", "", ""
def main():
with gr.Blocks() as demo:
gr.Markdown(
"# Question Answering with OpenVINO\n"
"Provide instruction which describes a task below or select among predefined examples and model writes response that performs requested task."
)
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
placeholder="Write an email about an alpaca that likes flan",
label="User instruction",
)
model_output = gr.Textbox(label="Model response", interactive=False)
performance = gr.Textbox(label="Performance", lines=1, interactive=False)
with gr.Column(scale=1):
button_clear = gr.Button(value="Clear")
button_submit = gr.Button(value="Submit")
gr.Examples(examples, user_text)
with gr.Column(scale=1):
max_new_tokens = gr.Slider(
minimum=1,
maximum=1000,
value=256,
step=1,
interactive=True,
label="Max New Tokens",
)
top_p = gr.Slider(
minimum=0.05,
maximum=1.0,
value=0.92,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
top_k = gr.Slider(
minimum=0,
maximum=50,
value=0,
step=1,
interactive=True,
label="Top-k",
)
temperature = gr.Slider(
minimum=0.1,
maximum=5.0,
value=0.8,
step=0.1,
interactive=True,
label="Temperature",
)
user_text.submit(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens, performance],
[model_output, performance],
)
button_submit.click(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens, performance],
[model_output, performance],
)
button_clear.click(
reset_textbox,
[user_text, model_output, performance],
[user_text, model_output, performance],
)
return demo
if __name__ == "__main__":
iface = main()
iface.launch(share=True)