maltose1's picture
Upload 365 files
853f6aa verified
"use client";
// azure and openai, using same models. so using same LLMApi.
import {
ApiPath,
OPENAI_BASE_URL,
DEFAULT_MODELS,
OpenaiPath,
Azure,
REQUEST_TIMEOUT_MS,
ServiceProvider,
} from "@/app/constant";
import {
ChatMessageTool,
useAccessStore,
useAppConfig,
useChatStore,
usePluginStore,
} from "@/app/store";
import { collectModelsWithDefaultModel } from "@/app/utils/model";
import {
preProcessImageContent,
uploadImage,
base64Image2Blob,
streamWithThink,
} from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { ModelSize, DalleQuality, DalleStyle } from "@/app/typing";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
LLMUsage,
MultimodalContent,
SpeechOptions,
} from "../api";
import Locale from "../../locales";
import { getClientConfig } from "@/app/config/client";
import {
getMessageTextContent,
isVisionModel,
isDalle3 as _isDalle3,
getTimeoutMSByModel,
} from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
object: string;
data: Array<{
id: string;
object: string;
root: string;
}>;
}
export interface RequestPayload {
messages: {
role: "system" | "user" | "assistant";
content: string | MultimodalContent[];
}[];
stream?: boolean;
model: string;
temperature: number;
presence_penalty: number;
frequency_penalty: number;
top_p: number;
max_tokens?: number;
max_completion_tokens?: number;
}
export interface DalleRequestPayload {
model: string;
prompt: string;
response_format: "url" | "b64_json";
n: number;
size: ModelSize;
quality: DalleQuality;
style: DalleStyle;
}
export class ChatGPTApi implements LLMApi {
private disableListModels = true;
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
const isAzure = path.includes("deployments");
if (accessStore.useCustomConfig) {
if (isAzure && !accessStore.isValidAzure()) {
throw Error(
"incomplete azure config, please check it in your settings page",
);
}
baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = isAzure ? ApiPath.Azure : ApiPath.OpenAI;
baseUrl = isApp ? OPENAI_BASE_URL : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (
!baseUrl.startsWith("http") &&
!isAzure &&
!baseUrl.startsWith(ApiPath.OpenAI)
) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
// try rebuild url, when using cloudflare ai gateway in client
return cloudflareAIGatewayUrl([baseUrl, path].join("/"));
}
async extractMessage(res: any) {
if (res.error) {
return "```\n" + JSON.stringify(res, null, 4) + "\n```";
}
// dalle3 model return url, using url create image message
if (res.data) {
let url = res.data?.at(0)?.url ?? "";
const b64_json = res.data?.at(0)?.b64_json ?? "";
if (!url && b64_json) {
// uploadImage
url = await uploadImage(base64Image2Blob(b64_json, "image/png"));
}
return [
{
type: "image_url",
image_url: {
url,
},
},
];
}
return res.choices?.at(0)?.message?.content ?? res;
}
async speech(options: SpeechOptions): Promise<ArrayBuffer> {
const requestPayload = {
model: options.model,
input: options.input,
voice: options.voice,
response_format: options.response_format,
speed: options.speed,
};
console.log("[Request] openai speech payload: ", requestPayload);
const controller = new AbortController();
options.onController?.(controller);
try {
const speechPath = this.path(OpenaiPath.SpeechPath);
const speechPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
const res = await fetch(speechPath, speechPayload);
clearTimeout(requestTimeoutId);
return await res.arrayBuffer();
} catch (e) {
console.log("[Request] failed to make a speech request", e);
throw e;
}
}
async chat(options: ChatOptions) {
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
let requestPayload: RequestPayload | DalleRequestPayload;
const isDalle3 = _isDalle3(options.config.model);
const isO1OrO3 =
options.config.model.startsWith("o1") ||
options.config.model.startsWith("o3");
if (isDalle3) {
const prompt = getMessageTextContent(
options.messages.slice(-1)?.pop() as any,
);
requestPayload = {
model: options.config.model,
prompt,
// URLs are only valid for 60 minutes after the image has been generated.
response_format: "b64_json", // using b64_json, and save image in CacheStorage
n: 1,
size: options.config?.size ?? "1024x1024",
quality: options.config?.quality ?? "standard",
style: options.config?.style ?? "vivid",
};
} else {
const visionModel = isVisionModel(options.config.model);
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = visionModel
? await preProcessImageContent(v.content)
: getMessageTextContent(v);
if (!(isO1OrO3 && v.role === "system"))
messages.push({ role: v.role, content });
}
// O1 not support image, tools (plugin in ChatGPTNextWeb) and system, stream, logprobs, temperature, top_p, n, presence_penalty, frequency_penalty yet.
requestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: !isO1OrO3 ? modelConfig.temperature : 1,
presence_penalty: !isO1OrO3 ? modelConfig.presence_penalty : 0,
frequency_penalty: !isO1OrO3 ? modelConfig.frequency_penalty : 0,
top_p: !isO1OrO3 ? modelConfig.top_p : 1,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
// O1 使用 max_completion_tokens 控制token数 (https://platform.openai.com/docs/guides/reasoning#controlling-costs)
if (isO1OrO3) {
requestPayload["max_completion_tokens"] = modelConfig.max_tokens;
}
// add max_tokens to vision model
if (visionModel) {
requestPayload["max_tokens"] = Math.max(modelConfig.max_tokens, 4000);
}
}
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !isDalle3 && !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
let chatPath = "";
if (modelConfig.providerName === ServiceProvider.Azure) {
// find model, and get displayName as deployName
const { models: configModels, customModels: configCustomModels } =
useAppConfig.getState();
const {
defaultModel,
customModels: accessCustomModels,
useCustomConfig,
} = useAccessStore.getState();
const models = collectModelsWithDefaultModel(
configModels,
[configCustomModels, accessCustomModels].join(","),
defaultModel,
);
const model = models.find(
(model) =>
model.name === modelConfig.model &&
model?.provider?.providerName === ServiceProvider.Azure,
);
chatPath = this.path(
(isDalle3 ? Azure.ImagePath : Azure.ChatPath)(
(model?.displayName ?? model?.name) as string,
useCustomConfig ? useAccessStore.getState().azureApiVersion : "",
),
);
} else {
chatPath = this.path(
isDalle3 ? OpenaiPath.ImagePath : OpenaiPath.ChatPath,
);
}
if (shouldStream) {
let index = -1;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
// console.log("getAsTools", tools, funcs);
streamWithThink(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string;
tool_calls: ChatMessageTool[];
reasoning_content: string | null;
};
}>;
if (!choices?.length) return { isThinking: false, content: "" };
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
index += 1;
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
const reasoning = choices[0]?.delta?.reasoning_content;
const content = choices[0]?.delta?.content;
// Skip if both content and reasoning_content are empty or null
if (
(!reasoning || reasoning.length === 0) &&
(!content || content.length === 0)
) {
return {
isThinking: false,
content: "",
};
}
if (reasoning && reasoning.length > 0) {
return {
isThinking: true,
content: reasoning,
};
} else if (content && content.length > 0) {
return {
isThinking: false,
content: content,
};
}
return {
isThinking: false,
content: "",
};
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// reset index value
index = -1;
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
getTimeoutMSByModel(options.config.model),
);
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = await this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
const formatDate = (d: Date) =>
`${d.getFullYear()}-${(d.getMonth() + 1).toString().padStart(2, "0")}-${d
.getDate()
.toString()
.padStart(2, "0")}`;
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
const now = new Date();
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
const startDate = formatDate(startOfMonth);
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
const [used, subs] = await Promise.all([
fetch(
this.path(
`${OpenaiPath.UsagePath}?start_date=${startDate}&end_date=${endDate}`,
),
{
method: "GET",
headers: getHeaders(),
},
),
fetch(this.path(OpenaiPath.SubsPath), {
method: "GET",
headers: getHeaders(),
}),
]);
if (used.status === 401) {
throw new Error(Locale.Error.Unauthorized);
}
if (!used.ok || !subs.ok) {
throw new Error("Failed to query usage from openai");
}
const response = (await used.json()) as {
total_usage?: number;
error?: {
type: string;
message: string;
};
};
const total = (await subs.json()) as {
hard_limit_usd?: number;
};
if (response.error && response.error.type) {
throw Error(response.error.message);
}
if (response.total_usage) {
response.total_usage = Math.round(response.total_usage) / 100;
}
if (total.hard_limit_usd) {
total.hard_limit_usd = Math.round(total.hard_limit_usd * 100) / 100;
}
return {
used: response.total_usage,
total: total.hard_limit_usd,
} as LLMUsage;
}
async models(): Promise<LLMModel[]> {
if (this.disableListModels) {
return DEFAULT_MODELS.slice();
}
const res = await fetch(this.path(OpenaiPath.ListModelPath), {
method: "GET",
headers: {
...getHeaders(),
},
});
const resJson = (await res.json()) as OpenAIListModelResponse;
const chatModels = resJson.data?.filter(
(m) => m.id.startsWith("gpt-") || m.id.startsWith("chatgpt-"),
);
console.log("[Models]", chatModels);
if (!chatModels) {
return [];
}
//由于目前 OpenAI 的 disableListModels 默认为 true,所以当前实际不会运行到这场
let seq = 1000; //同 Constant.ts 中的排序保持一致
return chatModels.map((m) => ({
name: m.id,
available: true,
sorted: seq++,
provider: {
id: "openai",
providerName: "OpenAI",
providerType: "openai",
sorted: 1,
},
}));
}
}
export { OpenaiPath };