Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import tensorflow as tf | |
| import json | |
| import cv2 | |
| from os.path import dirname, realpath, join | |
| current_dir = dirname(realpath(__file__)) | |
| with open(join(current_dir, 'image_labels.json')) as labels_file: | |
| labels=json.load(labels_file) | |
| mobile_net = tf.keras.applications.MobileNetV2() | |
| def image_classifier(img): | |
| img = cv2.resize(img, (224,224)) | |
| arr = np.expand_dims(img, axis=0) | |
| arr = tf.keras.applications.mobilenet.preprocess_input(arr) | |
| prediction = mobile_net.predict(arr).flatten() | |
| return {labels[i]:float(prediction[i]) for i in range(1000)} | |
| iface = gr.Interface( | |
| image_classifier, | |
| gr.Image(height=224, width=224), | |
| gr.Label(num_top_classes = 3), | |
| examples=[ | |
| ['Komodo_dragon.jpg'],['tiger_shark.jpg'],['tench.jpg'],['hair_slide.jpg'] | |
| ], | |
| example_labels = ['Komodo_dragon','tiger_shark','tench','hair_slide'] | |
| ) | |
| if __name__ == '__main__': | |
| iface.launch(share=True) |