Spaces:
Running
Running
import os | |
import openai | |
import time | |
from numpy import True_ | |
import gradio as gr | |
import soundfile as sf | |
from pydub import AudioSegment | |
from openai import OpenAI | |
# Load API key from an environment variable | |
OPENAI_SECRET_KEY = os.environ.get("OPENAI_SECRET_KEY") | |
client = OpenAI(api_key = OPENAI_SECRET_KEY) | |
note_transcript = "" | |
def transcribe(audio, history_type): | |
global note_transcript | |
history_type_map = { | |
"History": "Weldon_History_Format.txt", | |
"Physical": "Weldon_PE_Note_Format.txt", | |
"H+P": "Weldon_History_Physical_Format.txt", | |
"Impression/Plan": "Weldon_Impression_Note_Format.txt", | |
"Handover": "Weldon_Handover_Note_Format.txt", | |
"Meds Only": "Medications.txt", | |
"Triage": "Triage_Note_Format.txt", | |
"Full Visit": "Weldon_Full_Visit_Format.txt", | |
"Psych": "Weldon_Psych_Format.txt", | |
"SOAP": "Fell_SOAP_Note.txt" | |
} | |
file_name = history_type_map.get(history_type, "Fell_SOAP_Note.txt") | |
with open(f"Format_Library/{file_name}", "r") as f: | |
role = f.read() | |
messages = [{"role": "system", "content": role}] | |
################# Create Dialogue Transcript from Audio Recording and Append(via Whisper) | |
audio_data, samplerate = sf.read(audio) # read audio from filepath | |
#samplerate, audio_data = audio # read audio from numpy array | |
########## Cast as float 32, normalize | |
#audio_data = audio_data.astype("float32") | |
#audio_data = (audio_data * 32767).astype("int16") | |
#audio_data = audio_data.mean(axis=1) | |
#sf.write("Audio_Files/test.mp3", audio_data, samplerate) | |
###################Code to convert .wav to .mp3 | |
sf.write("Audio_Files/test.wav", audio_data, samplerate, subtype='PCM_16') | |
sound = AudioSegment.from_wav("Audio_Files/test.wav") | |
sound.export("Audio_Files/test.mp3", format="mp3") | |
################ Send file to Whisper for Transcription | |
audio_file = open("Audio_Files/test.mp3", "rb") | |
max_attempts = 3 | |
attempt = 0 | |
while attempt < max_attempts: | |
try: | |
#audio_transcript = openai.Audio.transcribe("whisper-1", audio_file) | |
audio_transcript = client.audio.transcriptions.create(model="whisper-1", file=audio_file) | |
break | |
except openai.error.APIConnectionError as e: | |
print(f"Attempt {attempt + 1} failed with error: {e}") | |
attempt += 1 | |
time.sleep(3) # wait for x seconds before retrying | |
else: | |
print("Failed to transcribe audio after multiple attempts") | |
print(audio_transcript.text) | |
#messages.append({"role": "user", "content": audio_transcript["text"]}) | |
messages.append({"role": "user", "content": audio_transcript.text}) | |
#Create Sample Dialogue Transcript from File (for debugging) | |
#with open('Audio_Files/Test_Elbow.txt', 'r') as file: | |
# audio_transcript = file.read() | |
#messages.append({"role": "user", "content": audio_transcript}) | |
### Word and MB Count | |
file_size = os.path.getsize("Audio_Files/test.mp3") | |
mp3_megabytes = file_size / (1024 * 1024) | |
mp3_megabytes = round(mp3_megabytes, 2) | |
audio_transcript_words = audio_transcript.text.split() # Use when using mic input | |
#audio_transcript_words = audio_transcript.split() #Use when using file | |
num_words = len(audio_transcript_words) | |
#Ask OpenAI to create note transcript | |
## 1.1.1 | |
response = client.chat.completions.create(model="gpt-4-1106-preview", temperature=0, messages=messages) | |
note_transcript = response.choices[0].message.content | |
print(note_transcript) | |
return [note_transcript, num_words,mp3_megabytes] | |
#Define Gradio Interface | |
my_inputs = [ | |
gr.Audio(source="microphone", type="filepath"), #Gradio 3.48.0 (OG version) | |
#gr.Audio(sources=["microphone"],type="numpy"), #Gradio 4.7.1 and later | |
gr.Radio(["History","H+P","Impression/Plan","Full Visit","Handover","Psych","SOAP","Meds Only"], show_label=False), | |
] | |
ui = gr.Interface(fn=transcribe, | |
inputs=my_inputs, | |
outputs=[gr.Textbox(label="Your Note", show_copy_button=True), | |
gr.Number(label="Audio Word Count"), | |
gr.Number(label=".mp3 MB")]) | |
ui.launch(share=False, debug=True) |