Spaces:
Runtime error
Runtime error
Maisarah Nurain
commited on
Commit
•
48e43cb
1
Parent(s):
eb8f9f1
Add application file
Browse files
app.py
CHANGED
@@ -3,6 +3,14 @@ import streamlit as st
|
|
3 |
import pandas as pd
|
4 |
import datetime
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
st.write("""
|
7 |
# Simple Stock Price App
|
8 |
|
@@ -10,16 +18,66 @@ Shown are the stock **closing price** and **volume**.
|
|
10 |
""")
|
11 |
|
12 |
def user_input_features() :
|
13 |
-
stock_symbol = st.sidebar.selectbox('Symbol',('ANTM
|
14 |
-
'MFMI.JK'))
|
15 |
date_start = st.sidebar.date_input("Start Date", datetime.date(2015, 5, 31))
|
16 |
date_end = st.sidebar.date_input("End Date", datetime.date.today())
|
17 |
|
18 |
-
tickerData = yf.Ticker(stock_symbol)
|
19 |
tickerDf = tickerData.history(period='1d', start=date_start, end=date_end)
|
20 |
-
return tickerDf
|
21 |
|
22 |
-
input_df = user_input_features()
|
23 |
|
24 |
st.line_chart(input_df.Close)
|
25 |
-
st.line_chart(input_df.Volume)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
import datetime
|
5 |
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from keras.models import Sequential
|
9 |
+
from keras.layers import LSTM
|
10 |
+
from keras.layers import Dense
|
11 |
+
from keras.layers import Bidirectional
|
12 |
+
|
13 |
+
|
14 |
st.write("""
|
15 |
# Simple Stock Price App
|
16 |
|
|
|
18 |
""")
|
19 |
|
20 |
def user_input_features() :
|
21 |
+
stock_symbol = st.sidebar.selectbox('Symbol',('ANTM', 'ARNA', 'DUTI', 'ELSA', 'MFMI'))
|
|
|
22 |
date_start = st.sidebar.date_input("Start Date", datetime.date(2015, 5, 31))
|
23 |
date_end = st.sidebar.date_input("End Date", datetime.date.today())
|
24 |
|
25 |
+
tickerData = yf.Ticker(stock_symbol+'.JK')
|
26 |
tickerDf = tickerData.history(period='1d', start=date_start, end=date_end)
|
27 |
+
return tickerDf, stock_symbol
|
28 |
|
29 |
+
input_df, stock_symbol = user_input_features()
|
30 |
|
31 |
st.line_chart(input_df.Close)
|
32 |
+
st.line_chart(input_df.Volume)
|
33 |
+
|
34 |
+
st.write("""
|
35 |
+
# Stock Price Prediction
|
36 |
+
|
37 |
+
Shown are the stock prediction for next 20 days.
|
38 |
+
""")
|
39 |
+
|
40 |
+
n_steps = 100
|
41 |
+
n_features = 1
|
42 |
+
|
43 |
+
model = Sequential()
|
44 |
+
model.add(Bidirectional(LSTM(300, activation='relu'), input_shape=(n_steps, n_features)))
|
45 |
+
model.add(Dense(1))
|
46 |
+
model.compile(optimizer='adam', loss='mse')
|
47 |
+
|
48 |
+
model.load_weights(stock_symbol + ".h5")
|
49 |
+
df = input_df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
|
50 |
+
df = df[df.Volume > 0]
|
51 |
+
|
52 |
+
close = df['Close'][-n_steps:].to_list()
|
53 |
+
min_in = min(close)
|
54 |
+
max_in = max(close)
|
55 |
+
in_seq = []
|
56 |
+
for i in close :
|
57 |
+
in_seq.append((i - min_in) / (max_in - min_in))
|
58 |
+
|
59 |
+
for i in range(20) :
|
60 |
+
x_input = np.array(in_seq[-100:])
|
61 |
+
x_input = x_input.reshape((1, n_steps, n_features))
|
62 |
+
yhat = model.predict(x_input, verbose=0)
|
63 |
+
in_seq.append(yhat[0][0])
|
64 |
+
|
65 |
+
norm_res = in_seq[-20:]
|
66 |
+
res = []
|
67 |
+
for i in norm_res :
|
68 |
+
res.append(i * (max_in - min_in) + min_in)
|
69 |
+
|
70 |
+
closepred = close[-80:]
|
71 |
+
for x in res :
|
72 |
+
closepred.append(x)
|
73 |
+
|
74 |
+
plt.figure(figsize = (20,10))
|
75 |
+
plt.plot(closepred, label="Prediction")
|
76 |
+
plt.plot(close[-80:], label="Previous")
|
77 |
+
plt.ylabel('Price (Rp)', fontsize = 15 )
|
78 |
+
plt.xlabel('Days', fontsize = 15 )
|
79 |
+
plt.title(stock_symbol + " Stock Prediction", fontsize = 20)
|
80 |
+
plt.legend()
|
81 |
+
plt.grid()
|
82 |
+
|
83 |
+
st.pyplot(plt)
|
myapp.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
import yfinance as yf
|
2 |
-
import streamlit as st
|
3 |
-
import pandas as pd
|
4 |
-
import datetime
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
from keras.models import Sequential
|
9 |
-
from keras.layers import LSTM
|
10 |
-
from keras.layers import Dense
|
11 |
-
from keras.layers import Bidirectional
|
12 |
-
|
13 |
-
|
14 |
-
st.write("""
|
15 |
-
# Simple Stock Price App
|
16 |
-
|
17 |
-
Shown are the stock **closing price** and **volume**.
|
18 |
-
""")
|
19 |
-
|
20 |
-
def user_input_features() :
|
21 |
-
stock_symbol = st.sidebar.selectbox('Symbol',('ANTM', 'ARNA', 'DUTI', 'ELSA', 'MFMI'))
|
22 |
-
date_start = st.sidebar.date_input("Start Date", datetime.date(2015, 5, 31))
|
23 |
-
date_end = st.sidebar.date_input("End Date", datetime.date.today())
|
24 |
-
|
25 |
-
tickerData = yf.Ticker(stock_symbol+'.JK')
|
26 |
-
tickerDf = tickerData.history(period='1d', start=date_start, end=date_end)
|
27 |
-
return tickerDf, stock_symbol
|
28 |
-
|
29 |
-
input_df, stock_symbol = user_input_features()
|
30 |
-
|
31 |
-
st.line_chart(input_df.Close)
|
32 |
-
st.line_chart(input_df.Volume)
|
33 |
-
|
34 |
-
st.write("""
|
35 |
-
# Stock Price Prediction
|
36 |
-
|
37 |
-
Shown are the stock prediction for next 20 days.
|
38 |
-
""")
|
39 |
-
|
40 |
-
n_steps = 100
|
41 |
-
n_features = 1
|
42 |
-
|
43 |
-
model = Sequential()
|
44 |
-
model.add(Bidirectional(LSTM(300, activation='relu'), input_shape=(n_steps, n_features)))
|
45 |
-
model.add(Dense(1))
|
46 |
-
model.compile(optimizer='adam', loss='mse')
|
47 |
-
|
48 |
-
model.load_weights(stock_symbol + ".h5")
|
49 |
-
df = input_df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
|
50 |
-
df = df[df.Volume > 0]
|
51 |
-
|
52 |
-
close = df['Close'][-n_steps:].to_list()
|
53 |
-
min_in = min(close)
|
54 |
-
max_in = max(close)
|
55 |
-
in_seq = []
|
56 |
-
for i in close :
|
57 |
-
in_seq.append((i - min_in) / (max_in - min_in))
|
58 |
-
|
59 |
-
for i in range(20) :
|
60 |
-
x_input = np.array(in_seq[-100:])
|
61 |
-
x_input = x_input.reshape((1, n_steps, n_features))
|
62 |
-
yhat = model.predict(x_input, verbose=0)
|
63 |
-
in_seq.append(yhat[0][0])
|
64 |
-
|
65 |
-
norm_res = in_seq[-20:]
|
66 |
-
res = []
|
67 |
-
for i in norm_res :
|
68 |
-
res.append(i * (max_in - min_in) + min_in)
|
69 |
-
|
70 |
-
closepred = close[-80:]
|
71 |
-
for x in res :
|
72 |
-
closepred.append(x)
|
73 |
-
|
74 |
-
plt.figure(figsize = (20,10))
|
75 |
-
plt.plot(closepred, label="Prediction")
|
76 |
-
plt.plot(close[-80:], label="Previous")
|
77 |
-
plt.ylabel('Price (Rp)', fontsize = 15 )
|
78 |
-
plt.xlabel('Days', fontsize = 15 )
|
79 |
-
plt.title(stock_symbol + " Stock Prediction", fontsize = 20)
|
80 |
-
plt.legend()
|
81 |
-
plt.grid()
|
82 |
-
|
83 |
-
st.pyplot(plt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|