photo2video / modules /avd_network.py
Tolga
version1
280b585
import torch
from torch import nn
class AVDNetwork(nn.Module):
"""
Animation via Disentanglement network
"""
def __init__(self, num_tps, id_bottle_size=64, pose_bottle_size=64):
super(AVDNetwork, self).__init__()
input_size = 5*2 * num_tps
self.num_tps = num_tps
self.id_encoder = nn.Sequential(
nn.Linear(input_size, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(inplace=True),
nn.Linear(1024, id_bottle_size)
)
self.pose_encoder = nn.Sequential(
nn.Linear(input_size, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(inplace=True),
nn.Linear(1024, pose_bottle_size)
)
self.decoder = nn.Sequential(
nn.Linear(pose_bottle_size + id_bottle_size, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Linear(256, input_size)
)
def forward(self, kp_source, kp_random):
bs = kp_source['fg_kp'].shape[0]
pose_emb = self.pose_encoder(kp_random['fg_kp'].view(bs, -1))
id_emb = self.id_encoder(kp_source['fg_kp'].view(bs, -1))
rec = self.decoder(torch.cat([pose_emb, id_emb], dim=1))
rec = {'fg_kp': rec.view(bs, self.num_tps*5, -1)}
return rec