Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
class AVDNetwork(nn.Module): | |
""" | |
Animation via Disentanglement network | |
""" | |
def __init__(self, num_tps, id_bottle_size=64, pose_bottle_size=64): | |
super(AVDNetwork, self).__init__() | |
input_size = 5*2 * num_tps | |
self.num_tps = num_tps | |
self.id_encoder = nn.Sequential( | |
nn.Linear(input_size, 256), | |
nn.BatchNorm1d(256), | |
nn.ReLU(inplace=True), | |
nn.Linear(256, 512), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.Linear(512, 1024), | |
nn.BatchNorm1d(1024), | |
nn.ReLU(inplace=True), | |
nn.Linear(1024, id_bottle_size) | |
) | |
self.pose_encoder = nn.Sequential( | |
nn.Linear(input_size, 256), | |
nn.BatchNorm1d(256), | |
nn.ReLU(inplace=True), | |
nn.Linear(256, 512), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.Linear(512, 1024), | |
nn.BatchNorm1d(1024), | |
nn.ReLU(inplace=True), | |
nn.Linear(1024, pose_bottle_size) | |
) | |
self.decoder = nn.Sequential( | |
nn.Linear(pose_bottle_size + id_bottle_size, 1024), | |
nn.BatchNorm1d(1024), | |
nn.ReLU(), | |
nn.Linear(1024, 512), | |
nn.BatchNorm1d(512), | |
nn.ReLU(), | |
nn.Linear(512, 256), | |
nn.BatchNorm1d(256), | |
nn.ReLU(), | |
nn.Linear(256, input_size) | |
) | |
def forward(self, kp_source, kp_random): | |
bs = kp_source['fg_kp'].shape[0] | |
pose_emb = self.pose_encoder(kp_random['fg_kp'].view(bs, -1)) | |
id_emb = self.id_encoder(kp_source['fg_kp'].view(bs, -1)) | |
rec = self.decoder(torch.cat([pose_emb, id_emb], dim=1)) | |
rec = {'fg_kp': rec.view(bs, self.num_tps*5, -1)} | |
return rec | |