Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,41 +2,35 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
| 4 |
import re
|
| 5 |
-
import matplotlib
|
| 6 |
-
matplotlib.use("Agg")
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
from tokenizers.normalizers import Sequence, Replace, Strip
|
| 9 |
from tokenizers import Regex
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
# Device setup
|
| 13 |
-
# -------------------------
|
| 14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
# Model and Tokenizer Setup
|
| 18 |
-
# -------------------------
|
| 19 |
model1_path = "modernbert.bin"
|
| 20 |
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
|
| 21 |
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
|
| 22 |
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
model_3
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
#
|
| 40 |
label_mapping = {
|
| 41 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
| 42 |
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
|
|
@@ -50,9 +44,7 @@ label_mapping = {
|
|
| 50 |
39: 'text-davinci-002', 40: 'text-davinci-003'
|
| 51 |
}
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
# Text Cleaning
|
| 55 |
-
# -------------------------
|
| 56 |
def clean_text(text: str) -> str:
|
| 57 |
text = re.sub(r'\s{2,}', ' ', text)
|
| 58 |
text = re.sub(r'\s+([,.;:?!])', r'\1', text)
|
|
@@ -65,21 +57,20 @@ tokenizer.backend_tokenizer.normalizer = Sequence([
|
|
| 65 |
Strip()
|
| 66 |
])
|
| 67 |
|
| 68 |
-
|
| 69 |
-
# Classification Function
|
| 70 |
-
# -------------------------
|
| 71 |
def classify_text(text):
|
| 72 |
cleaned_text = clean_text(text)
|
| 73 |
if not cleaned_text.strip():
|
| 74 |
-
return "
|
| 75 |
|
|
|
|
| 76 |
paragraphs = [p.strip() for p in re.split(r'\n{2,}', cleaned_text) if p.strip()]
|
| 77 |
chunk_scores = []
|
| 78 |
all_probabilities = []
|
| 79 |
|
| 80 |
for i, paragraph in enumerate(paragraphs):
|
| 81 |
inputs = tokenizer(paragraph, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 82 |
-
|
| 83 |
with torch.no_grad():
|
| 84 |
logits_1 = model_1(**inputs).logits
|
| 85 |
logits_2 = model_2(**inputs).logits
|
|
@@ -88,51 +79,50 @@ def classify_text(text):
|
|
| 88 |
softmax_1 = torch.softmax(logits_1, dim=1)
|
| 89 |
softmax_2 = torch.softmax(logits_2, dim=1)
|
| 90 |
softmax_3 = torch.softmax(logits_3, dim=1)
|
| 91 |
-
averaged_probabilities = (softmax_1 + softmax_2 + softmax_3) / 3
|
| 92 |
-
probabilities = averaged_probabilities[0]
|
| 93 |
-
all_probabilities.append(probabilities.cpu())
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
ai_total_prob = ai_probs_clone.sum().item()
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
human_pct = (human_prob / total) * 100
|
| 102 |
-
ai_pct = (
|
| 103 |
ai_model = label_mapping[torch.argmax(ai_probs_clone).item()]
|
| 104 |
|
| 105 |
chunk_scores.append({
|
| 106 |
-
"paragraph": paragraph[:150] + ("..." if len(paragraph) > 150 else ""),
|
| 107 |
"human": human_pct,
|
| 108 |
"ai": ai_pct,
|
| 109 |
-
"model": ai_model
|
|
|
|
| 110 |
})
|
| 111 |
|
| 112 |
-
#
|
| 113 |
avg_human = sum(c["human"] for c in chunk_scores) / len(chunk_scores)
|
| 114 |
avg_ai = sum(c["ai"] for c in chunk_scores) / len(chunk_scores)
|
|
|
|
| 115 |
if avg_human > avg_ai:
|
| 116 |
result_message = f"**Overall Result:** <span class='highlight-human'>{avg_human:.2f}% Human-written</span>"
|
| 117 |
else:
|
| 118 |
top_model = max(chunk_scores, key=lambda c: c['ai'])['model']
|
| 119 |
result_message = f"**Overall Result:** <span class='highlight-ai'>{avg_ai:.2f}% AI-generated (likely {top_model})</span>"
|
| 120 |
|
| 121 |
-
#
|
| 122 |
-
|
| 123 |
-
for
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
# --- Plot ---
|
| 132 |
mean_probs = torch.mean(torch.stack(all_probabilities), dim=0)
|
| 133 |
-
top_5_probs,
|
| 134 |
top_5_probs = top_5_probs.cpu().numpy()
|
| 135 |
-
top_5_labels = [label_mapping[i.item()] for i in
|
| 136 |
|
| 137 |
fig, ax = plt.subplots(figsize=(10, 5))
|
| 138 |
bars = ax.barh(top_5_labels, top_5_probs, color='#4CAF50')
|
|
@@ -144,30 +134,31 @@ def classify_text(text):
|
|
| 144 |
ax.text(width + 0.005, bar.get_y() + bar.get_height() / 2, f'{width:.2%}', va='center')
|
| 145 |
plt.tight_layout()
|
| 146 |
|
| 147 |
-
return result_message + "
|
| 148 |
|
| 149 |
|
| 150 |
-
#
|
| 151 |
-
# UI Setup
|
| 152 |
-
# -------------------------
|
| 153 |
title = "AI Text Detector"
|
| 154 |
description = """
|
| 155 |
-
This tool uses
|
| 156 |
Each paragraph is analyzed separately to show which parts are likely AI-generated.
|
| 157 |
"""
|
| 158 |
bottom_text = "**Developed by SzegedAI – Extended by Saber**"
|
| 159 |
|
| 160 |
AI_texts = [
|
| 161 |
-
"Artificial intelligence (AI) is reshaping industries by automating tasks, enhancing decision-making, and driving innovation. From predictive analytics in finance to autonomous vehicles in transportation, AI technologies are becoming integral to daily operations."
|
| 162 |
]
|
| 163 |
|
| 164 |
Human_texts = [
|
| 165 |
-
"Mathematics has always been a cornerstone of scientific discovery. It provides a precise language for describing natural phenomena, from the orbit of planets to the behavior of subatomic particles."
|
| 166 |
]
|
| 167 |
|
| 168 |
iface = gr.Blocks(css="""
|
| 169 |
@import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap');
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
| 171 |
.highlight-human { color: #4CAF50; font-weight: bold; }
|
| 172 |
.highlight-ai { color: #FF5733; font-weight: bold; }
|
| 173 |
""")
|
|
@@ -175,18 +166,14 @@ iface = gr.Blocks(css="""
|
|
| 175 |
with iface:
|
| 176 |
gr.Markdown(f"# {title}")
|
| 177 |
gr.Markdown(description)
|
| 178 |
-
text_input = gr.Textbox(label="", placeholder="Paste your article here...", lines=10)
|
| 179 |
-
|
| 180 |
-
result_output = gr.HTML(label="Result")
|
| 181 |
plot_output = gr.Plot(label="Model Probability Distribution")
|
| 182 |
-
|
| 183 |
-
analyze_btn.click(classify_text, inputs=text_input, outputs=[result_output, plot_output])
|
| 184 |
-
|
| 185 |
with gr.Tab("AI Examples"):
|
| 186 |
gr.Examples(AI_texts, inputs=text_input)
|
| 187 |
with gr.Tab("Human Examples"):
|
| 188 |
gr.Examples(Human_texts, inputs=text_input)
|
| 189 |
-
|
| 190 |
gr.Markdown(bottom_text)
|
| 191 |
|
| 192 |
iface.launch(share=True)
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
| 4 |
import re
|
|
|
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from tokenizers.normalizers import Sequence, Replace, Strip
|
| 7 |
from tokenizers import Regex
|
| 8 |
|
| 9 |
+
# ---- Device setup ----
|
|
|
|
|
|
|
| 10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
|
| 12 |
+
# ---- Model and Tokenizer Setup ----
|
|
|
|
|
|
|
| 13 |
model1_path = "modernbert.bin"
|
| 14 |
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
|
| 15 |
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
|
| 16 |
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
| 18 |
|
| 19 |
+
# Load models
|
| 20 |
+
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
| 21 |
+
model_1.load_state_dict(torch.load(model1_path, map_location=device))
|
| 22 |
+
model_1.to(device).eval()
|
| 23 |
+
|
| 24 |
+
model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
| 25 |
+
model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device))
|
| 26 |
+
model_2.to(device).eval()
|
| 27 |
+
|
| 28 |
+
model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
|
| 29 |
+
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device))
|
| 30 |
+
model_3.to(device).eval()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# ---- Label Mapping ----
|
| 34 |
label_mapping = {
|
| 35 |
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
| 36 |
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
|
|
|
|
| 44 |
39: 'text-davinci-002', 40: 'text-davinci-003'
|
| 45 |
}
|
| 46 |
|
| 47 |
+
# ---- Text Cleaning ----
|
|
|
|
|
|
|
| 48 |
def clean_text(text: str) -> str:
|
| 49 |
text = re.sub(r'\s{2,}', ' ', text)
|
| 50 |
text = re.sub(r'\s+([,.;:?!])', r'\1', text)
|
|
|
|
| 57 |
Strip()
|
| 58 |
])
|
| 59 |
|
| 60 |
+
|
| 61 |
+
# ---- Classification Function ----
|
|
|
|
| 62 |
def classify_text(text):
|
| 63 |
cleaned_text = clean_text(text)
|
| 64 |
if not cleaned_text.strip():
|
| 65 |
+
return "**Error:** Please enter some text to analyze.", None
|
| 66 |
|
| 67 |
+
# Split into paragraphs
|
| 68 |
paragraphs = [p.strip() for p in re.split(r'\n{2,}', cleaned_text) if p.strip()]
|
| 69 |
chunk_scores = []
|
| 70 |
all_probabilities = []
|
| 71 |
|
| 72 |
for i, paragraph in enumerate(paragraphs):
|
| 73 |
inputs = tokenizer(paragraph, return_tensors="pt", truncation=True, padding=True).to(device)
|
|
|
|
| 74 |
with torch.no_grad():
|
| 75 |
logits_1 = model_1(**inputs).logits
|
| 76 |
logits_2 = model_2(**inputs).logits
|
|
|
|
| 79 |
softmax_1 = torch.softmax(logits_1, dim=1)
|
| 80 |
softmax_2 = torch.softmax(logits_2, dim=1)
|
| 81 |
softmax_3 = torch.softmax(logits_3, dim=1)
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
avg_probs = (softmax_1 + softmax_2 + softmax_3) / 3
|
| 84 |
+
probs = avg_probs[0]
|
| 85 |
+
all_probabilities.append(probs.cpu())
|
|
|
|
| 86 |
|
| 87 |
+
human_prob = probs[24].item()
|
| 88 |
+
ai_probs_clone = probs.clone()
|
| 89 |
+
ai_probs_clone[24] = 0
|
| 90 |
+
ai_total = ai_probs_clone.sum().item()
|
| 91 |
+
total = human_prob + ai_total
|
| 92 |
human_pct = (human_prob / total) * 100
|
| 93 |
+
ai_pct = (ai_total / total) * 100
|
| 94 |
ai_model = label_mapping[torch.argmax(ai_probs_clone).item()]
|
| 95 |
|
| 96 |
chunk_scores.append({
|
|
|
|
| 97 |
"human": human_pct,
|
| 98 |
"ai": ai_pct,
|
| 99 |
+
"model": ai_model,
|
| 100 |
+
"text": paragraph[:200].replace('\n', ' ') + ("..." if len(paragraph) > 200 else "")
|
| 101 |
})
|
| 102 |
|
| 103 |
+
# ---- Overall Averages ----
|
| 104 |
avg_human = sum(c["human"] for c in chunk_scores) / len(chunk_scores)
|
| 105 |
avg_ai = sum(c["ai"] for c in chunk_scores) / len(chunk_scores)
|
| 106 |
+
|
| 107 |
if avg_human > avg_ai:
|
| 108 |
result_message = f"**Overall Result:** <span class='highlight-human'>{avg_human:.2f}% Human-written</span>"
|
| 109 |
else:
|
| 110 |
top_model = max(chunk_scores, key=lambda c: c['ai'])['model']
|
| 111 |
result_message = f"**Overall Result:** <span class='highlight-ai'>{avg_ai:.2f}% AI-generated (likely {top_model})</span>"
|
| 112 |
|
| 113 |
+
# ---- Paragraph Analysis (Markdown Clean) ----
|
| 114 |
+
paragraph_text = "\n\n**Paragraph Analysis:**\n"
|
| 115 |
+
for i, c in enumerate(chunk_scores, 1):
|
| 116 |
+
paragraph_text += (
|
| 117 |
+
f"**Paragraph {i}:** {c['human']:.2f}% Human | {c['ai']:.2f}% AI → *{c['model']}*\n"
|
| 118 |
+
f"{c['text']}\n\n"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# ---- Top 5 Models Plot ----
|
|
|
|
|
|
|
| 122 |
mean_probs = torch.mean(torch.stack(all_probabilities), dim=0)
|
| 123 |
+
top_5_probs, top_5_idx = torch.topk(mean_probs, 5)
|
| 124 |
top_5_probs = top_5_probs.cpu().numpy()
|
| 125 |
+
top_5_labels = [label_mapping[i.item()] for i in top_5_idx]
|
| 126 |
|
| 127 |
fig, ax = plt.subplots(figsize=(10, 5))
|
| 128 |
bars = ax.barh(top_5_labels, top_5_probs, color='#4CAF50')
|
|
|
|
| 134 |
ax.text(width + 0.005, bar.get_y() + bar.get_height() / 2, f'{width:.2%}', va='center')
|
| 135 |
plt.tight_layout()
|
| 136 |
|
| 137 |
+
return result_message + "\n\n" + paragraph_text, fig
|
| 138 |
|
| 139 |
|
| 140 |
+
# ---- UI Setup ----
|
|
|
|
|
|
|
| 141 |
title = "AI Text Detector"
|
| 142 |
description = """
|
| 143 |
+
This tool uses **ModernBERT** to detect AI-generated text.
|
| 144 |
Each paragraph is analyzed separately to show which parts are likely AI-generated.
|
| 145 |
"""
|
| 146 |
bottom_text = "**Developed by SzegedAI – Extended by Saber**"
|
| 147 |
|
| 148 |
AI_texts = [
|
| 149 |
+
"Artificial intelligence (AI) is reshaping industries by automating tasks, enhancing decision-making, and driving innovation. From predictive analytics in finance to autonomous vehicles in transportation, AI technologies are becoming integral to daily operations. The future of AI lies not only in technological advancement but also in ensuring ethical use, transparency, and accountability."
|
| 150 |
]
|
| 151 |
|
| 152 |
Human_texts = [
|
| 153 |
+
"Mathematics has always been a cornerstone of scientific discovery. It provides a precise language for describing natural phenomena, from the orbit of planets to the behavior of subatomic particles. The beauty of mathematics lies in its universality—its principles hold true regardless of context or culture."
|
| 154 |
]
|
| 155 |
|
| 156 |
iface = gr.Blocks(css="""
|
| 157 |
@import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap');
|
| 158 |
+
#text_input_box { border-radius: 10px; border: 2px solid #4CAF50; font-size: 18px; padding: 15px; margin-bottom: 20px; width: 60%; margin: auto; }
|
| 159 |
+
#result_output_box { border-radius: 10px; border: 2px solid #4CAF50; font-size: 16px; padding: 15px; margin-top: 20px; width: 80%; margin: auto; }
|
| 160 |
+
body { font-family: 'Roboto Mono', sans-serif !important; padding: 20px; }
|
| 161 |
+
.gradio-container { border: 1px solid #4CAF50; border-radius: 15px; padding: 30px; box-shadow: 0px 0px 10px rgba(0,255,0,0.4); max-width: 900px; margin: auto; }
|
| 162 |
.highlight-human { color: #4CAF50; font-weight: bold; }
|
| 163 |
.highlight-ai { color: #FF5733; font-weight: bold; }
|
| 164 |
""")
|
|
|
|
| 166 |
with iface:
|
| 167 |
gr.Markdown(f"# {title}")
|
| 168 |
gr.Markdown(description)
|
| 169 |
+
text_input = gr.Textbox(label="", placeholder="Paste your article here...", elem_id="text_input_box", lines=10)
|
| 170 |
+
result_output = gr.HTML("", elem_id="result_output_box")
|
|
|
|
| 171 |
plot_output = gr.Plot(label="Model Probability Distribution")
|
| 172 |
+
text_input.change(classify_text, inputs=text_input, outputs=[result_output, plot_output])
|
|
|
|
|
|
|
| 173 |
with gr.Tab("AI Examples"):
|
| 174 |
gr.Examples(AI_texts, inputs=text_input)
|
| 175 |
with gr.Tab("Human Examples"):
|
| 176 |
gr.Examples(Human_texts, inputs=text_input)
|
|
|
|
| 177 |
gr.Markdown(bottom_text)
|
| 178 |
|
| 179 |
iface.launch(share=True)
|