mahmoud669 commited on
Commit
60ebf8f
1 Parent(s): e40a05a

Update scrub.py

Browse files
Files changed (1) hide show
  1. scrub.py +4 -2
scrub.py CHANGED
@@ -344,12 +344,13 @@ def unlearn():
344
  model.load_state_dict(torch.load('faces_best_model.pth', map_location=torch.device('cpu')))
345
  model_eval = copy.deepcopy(model)
346
  model_eval.eval()
 
347
  forget_class = get_forget_class('forget_set', model_eval)
348
  mean, std, im_size = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225], 224
349
  tfs = transforms.Compose([transforms.Resize((im_size, im_size)), transforms.ToTensor(), transforms.Normalize(mean = mean, std = std)])
350
  will_tr_dl, will_val_dl, will_ts_dl, classes = get_dls(root = "forget_set", forget_class=forget_class, transformations = tfs, bs = 32, single=True)
351
  celebs_tr_dl, celebs_val_dl, celebs_ts_dl, classes = get_dls(root = "celeb-dataset", forget_class=forget_class, transformations = tfs, bs = 32)
352
-
353
  args = Args()
354
  args.optim = 'sgd'
355
  args.gamma = 0.99
@@ -395,8 +396,9 @@ def unlearn():
395
  weight_decay=args.sgda_weight_decay)
396
 
397
  module_list.append(model_t)
398
-
399
  for epoch in tqdm(range(1, args.sgda_epochs + 1)):
 
400
  maximize_loss = 0
401
  if epoch <= args.msteps:
402
  maximize_loss = train_distill(epoch, will_tr_dl, module_list, swa_model, criterion_list, optimizer, args, "maximize")
 
344
  model.load_state_dict(torch.load('faces_best_model.pth', map_location=torch.device('cpu')))
345
  model_eval = copy.deepcopy(model)
346
  model_eval.eval()
347
+ print("BEGIN INTIALZINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG")
348
  forget_class = get_forget_class('forget_set', model_eval)
349
  mean, std, im_size = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225], 224
350
  tfs = transforms.Compose([transforms.Resize((im_size, im_size)), transforms.ToTensor(), transforms.Normalize(mean = mean, std = std)])
351
  will_tr_dl, will_val_dl, will_ts_dl, classes = get_dls(root = "forget_set", forget_class=forget_class, transformations = tfs, bs = 32, single=True)
352
  celebs_tr_dl, celebs_val_dl, celebs_ts_dl, classes = get_dls(root = "celeb-dataset", forget_class=forget_class, transformations = tfs, bs = 32)
353
+ print("BEGIN PEeEEEEEEEEEEEEEEEEEEEEEEERPARING FOR UNLEARNINGGGGGGGG")
354
  args = Args()
355
  args.optim = 'sgd'
356
  args.gamma = 0.99
 
396
  weight_decay=args.sgda_weight_decay)
397
 
398
  module_list.append(model_t)
399
+ print("BEGIN UNLEARNINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG")
400
  for epoch in tqdm(range(1, args.sgda_epochs + 1)):
401
+ print("\n\n==============================>epoch: ", epoch)
402
  maximize_loss = 0
403
  if epoch <= args.msteps:
404
  maximize_loss = train_distill(epoch, will_tr_dl, module_list, swa_model, criterion_list, optimizer, args, "maximize")