mahesh1209 commited on
Commit
93f73e7
·
verified ·
1 Parent(s): c66f6fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -20
app.py CHANGED
@@ -1,16 +1,8 @@
1
- from fastapi import FastAPI
2
- from pydantic import BaseModel
3
  import pandas as pd
4
  from sklearn.linear_model import LinearRegression
5
  from sklearn.model_selection import train_test_split
6
  import gradio as gr
7
 
8
- app = FastAPI()
9
-
10
- @app.get("/")
11
- def read_root():
12
- return {"message": "House Price Prediction API is running"}
13
-
14
  # ✅ Load inline dataset
15
  def load_data():
16
  csv_data = """area,bedrooms,age,price
@@ -38,22 +30,12 @@ def predict_price(model, area, bedrooms, age):
38
 
39
  model = train_model()
40
 
41
- # ✅ FastAPI POST endpoint
42
- class HouseFeatures(BaseModel):
43
- area: float
44
- bedrooms: int
45
- age: int
46
-
47
- @app.post("/predict")
48
- def predict(data: HouseFeatures):
49
- price = predict_price(model, data.area, data.bedrooms, data.age)
50
- return {"predicted_price": round(price, 2)}
51
-
52
- # ✅ Gradio UI
53
  def gradio_predict(area, bedrooms, age):
54
  price = predict_price(model, area, bedrooms, age)
55
  return f"Predicted Price: ₹{round(price, 2):,.0f}"
56
 
 
57
  demo = gr.Interface(
58
  fn=gradio_predict,
59
  inputs=[
 
 
 
1
  import pandas as pd
2
  from sklearn.linear_model import LinearRegression
3
  from sklearn.model_selection import train_test_split
4
  import gradio as gr
5
 
 
 
 
 
 
 
6
  # ✅ Load inline dataset
7
  def load_data():
8
  csv_data = """area,bedrooms,age,price
 
30
 
31
  model = train_model()
32
 
33
+ # ✅ Gradio UI function
 
 
 
 
 
 
 
 
 
 
 
34
  def gradio_predict(area, bedrooms, age):
35
  price = predict_price(model, area, bedrooms, age)
36
  return f"Predicted Price: ₹{round(price, 2):,.0f}"
37
 
38
+ # ✅ Launch Gradio interface
39
  demo = gr.Interface(
40
  fn=gradio_predict,
41
  inputs=[