Update app.py
Browse files
app.py
CHANGED
|
@@ -24,10 +24,10 @@ docs = text_splitter.create_documents([sample_logs])
|
|
| 24 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 25 |
db = FAISS.from_documents(docs, embeddings)
|
| 26 |
|
| 27 |
-
# ✅
|
| 28 |
-
model_id = "
|
| 29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
| 30 |
-
model = AutoModelForCausalLM.from_pretrained(model_id
|
| 31 |
llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256)
|
| 32 |
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
| 33 |
|
|
|
|
| 24 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 25 |
db = FAISS.from_documents(docs, embeddings)
|
| 26 |
|
| 27 |
+
# ✅ Use DeepSeek Coder (fast, public, code-tuned)
|
| 28 |
+
model_id = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 30 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 31 |
llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256)
|
| 32 |
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
| 33 |
|