Spaces:
Runtime error
Runtime error
import gradio as gr | |
import librosa | |
import torch | |
import torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import numpy as np | |
processor = Wav2Vec2Processor.from_pretrained("maher13/arabic-iti") | |
model = Wav2Vec2ForCTC.from_pretrained("maher13/arabic-iti").eval() | |
def asr_transcript(audio_file, audio_file2): | |
transcript = "" | |
if audio_file : | |
wav, sr = librosa.load(audio_file.name, sr=16000) | |
input_values = processor(wav, sampling_rate=16000, return_tensors="pt", padding=True).input_values | |
logits = model(input_values).logits | |
with torch.no_grad(): | |
predicted_ids = torch.argmax(logits, dim=-1) | |
predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id | |
transcription1 = processor.tokenizer.batch_decode(predicted_ids)[0] | |
else: | |
transcription1 = "N/A" | |
if audio_file2 : | |
wav, sr = librosa.load(audio_file2.name, sr=16000) | |
input_values = processor(wav, sampling_rate=16000, return_tensors="pt", padding=True).input_values | |
logits = model(input_values).logits | |
with torch.no_grad(): | |
predicted_ids = torch.argmax(logits, dim=-1) | |
predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id | |
transcription2 = processor.tokenizer.batch_decode(predicted_ids)[0] | |
else : | |
transcription2 = "N/A" | |
return transcription1, transcription2 | |
gradio_ui = gr.Interface( | |
fn=asr_transcript, | |
title="Speech to Text Graduation project \n sponsored by TensorGraph", | |
inputs= | |
[ | |
gr.inputs.Audio(source = 'microphone', type="file", optional = True), | |
gr.inputs.Audio(source = 'upload', type="file", optional = True) | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="Auto-Transcript"), | |
gr.outputs.Textbox(label="Auto-Transcript") | |
], | |
) | |
#gradio_ui.launch(share=True) | |
gradio_ui.launch(share=True) | |