|
import torch |
|
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler |
|
from diffusers.utils import export_to_video |
|
from transformers import CLIPVisionModel |
|
import gradio as gr |
|
import tempfile |
|
import spaces |
|
from huggingface_hub import hf_hub_download |
|
import numpy as np |
|
from PIL import Image |
|
import random |
|
|
|
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" |
|
LORA_REPO_ID = "Kijai/WanVideo_comfy" |
|
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" |
|
|
|
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32) |
|
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) |
|
pipe = WanImageToVideoPipeline.from_pretrained( |
|
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 |
|
) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) |
|
pipe.to("cuda") |
|
|
|
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) |
|
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") |
|
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) |
|
pipe.fuse_lora() |
|
|
|
MOD_VALUE = 32 |
|
DEFAULT_H_SLIDER_VALUE = 320 |
|
DEFAULT_W_SLIDER_VALUE = 560 |
|
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 |
|
|
|
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 |
|
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
FIXED_FPS = 24 |
|
MIN_FRAMES_MODEL = 8 |
|
MAX_FRAMES_MODEL = 120 |
|
|
|
default_prompt_i2v = "Сделайте это изображение живым с кинематографичными движениями, плавной анимацией." |
|
|
|
|
|
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" |
|
|
|
|
|
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, |
|
min_slider_h, max_slider_h, |
|
min_slider_w, max_slider_w, |
|
default_h, default_w): |
|
orig_w, orig_h = pil_image.size |
|
if orig_w <= 0 or orig_h <= 0: |
|
return default_h, default_w |
|
|
|
aspect_ratio = orig_h / orig_w |
|
|
|
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) |
|
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) |
|
|
|
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) |
|
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) |
|
|
|
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) |
|
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) |
|
|
|
return new_h, new_w |
|
|
|
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): |
|
if uploaded_pil_image is None: |
|
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) |
|
try: |
|
new_h, new_w = _calculate_new_dimensions_wan( |
|
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, |
|
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, |
|
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE |
|
) |
|
return gr.update(value=new_h), gr.update(value=new_w) |
|
except Exception as e: |
|
gr.Warning("Ошибка при попытке вычисления новых размеров") |
|
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) |
|
|
|
def get_duration(input_image, prompt, height, width, |
|
negative_prompt, duration_seconds, |
|
guidance_scale, steps, |
|
seed, randomize_seed, |
|
progress): |
|
if steps > 4 and duration_seconds > 2: |
|
return 90 |
|
elif steps > 4 or duration_seconds > 2: |
|
return 75 |
|
else: |
|
return 60 |
|
|
|
@spaces.GPU(duration=get_duration) |
|
def generate_video(input_image, prompt, height, width, |
|
negative_prompt=default_negative_prompt, duration_seconds = 5, |
|
guidance_scale = 1, steps = 4, |
|
seed = 42, randomize_seed = False, |
|
progress=gr.Progress(track_tqdm=True)): |
|
if input_image is None: |
|
raise gr.Error("Загрузите картинку.") |
|
|
|
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) |
|
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) |
|
|
|
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) |
|
|
|
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) |
|
|
|
resized_image = input_image.resize((target_w, target_h)) |
|
prompt = prompt |
|
with torch.inference_mode(): |
|
output_frames_list = pipe( |
|
image=resized_image, prompt=prompt, negative_prompt=negative_prompt, |
|
height=target_h, width=target_w, num_frames=num_frames, |
|
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), |
|
generator=torch.Generator(device="cuda").manual_seed(current_seed) |
|
).frames[0] |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: |
|
video_path = tmpfile.name |
|
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) |
|
return video_path, current_seed |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Быстрый 4х ступенчатый Wan 2.1 I2V (14B) от CausVid LoRA") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_component = gr.Image(type="pil", label="Картинка (авто-размер)") |
|
prompt_input = gr.Textbox(label="Промпт", value=default_prompt_i2v) |
|
duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=5, label="Продолжительность (сек)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.") |
|
|
|
with gr.Accordion("Настройки", open=False): |
|
negative_prompt_input = gr.Textbox(label="Негативный промпт", value=default_negative_prompt, lines=3) |
|
seed_input = gr.Slider(label="Зерно", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) |
|
randomize_seed_checkbox = gr.Checkbox(label="Случайное зерно", value=True, interactive=True) |
|
with gr.Row(): |
|
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Высота (мастабирование от {MOD_VALUE})") |
|
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Ширина (мастабирование от {MOD_VALUE})") |
|
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Количество шагов") |
|
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Соответствие", visible=False) |
|
|
|
generate_button = gr.Button("Генерация", variant="primary") |
|
with gr.Column(): |
|
video_output = gr.Video(label="Видео", autoplay=True, interactive=False) |
|
|
|
input_image_component.upload( |
|
fn=handle_image_upload_for_dims_wan, |
|
inputs=[input_image_component, height_input, width_input], |
|
outputs=[height_input, width_input] |
|
) |
|
|
|
input_image_component.clear( |
|
fn=handle_image_upload_for_dims_wan, |
|
inputs=[input_image_component, height_input, width_input], |
|
outputs=[height_input, width_input] |
|
) |
|
|
|
ui_inputs = [ |
|
input_image_component, prompt_input, height_input, width_input, |
|
negative_prompt_input, duration_seconds_input, |
|
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox |
|
] |
|
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["peng.png", "пингвин игриво танцует на снегу, Антарктида", 896, 896], |
|
["forg.jpg", "лягушка прыгает по кругу", 832, 832], |
|
], |
|
inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(mcp_server=True) |