Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import random | |
# import sys | |
# import os | |
# | |
# BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
# sys.path.append(BASE_DIR) | |
# os.system("CUDA_HOME=/usr/local/cuda python -m pip uninstall groundingdino") | |
os.system("git clone https://github.com/IDEA-Research/GroundingDINO.git" | |
"&& export CUDA_HOME=/usr/local/cuda; pip install -e GroundingDINO") | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
import gradio as gr | |
from constants.constant import LIGHTER_COLOR_MAP_HEX | |
# NOTE: Must import LlamaTokenizer before `bubogpt.common.config` | |
# otherwise, it will cause seg fault when `llama_tokenizer.decode` is called | |
from grounding_model import GroundingModule | |
from match import MatchModule | |
from bubogpt.common.config import Config | |
from bubogpt.common.dist_utils import get_rank | |
from bubogpt.common.registry import registry | |
from eval_scripts.conversation import Chat, CONV_X, DummyChat | |
# NOTE&TODO: put this before bubogpt import will cause circular import | |
# possibly because `imagebind` imports `bubogpt` and `bubogpt` also imports `imagebind` | |
from imagebind.models.image_bind import ModalityType | |
# from ner import NERModule | |
from tagging_model import TaggingModule | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Qualitative") | |
parser.add_argument("--cfg-path", help="path to configuration file.", default='./eval_configs/mmgpt4_eval.yaml') | |
parser.add_argument("--dummy", action="store_true", help="Debug Mode") | |
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
parser.add_argument("--ground-all", action="store_true") | |
args = parser.parse_args() | |
return args | |
def setup_seeds(config): | |
seed = config.run_cfg.seed + get_rank() | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
# ======================================== | |
# Model Initialization | |
# ======================================== | |
print('Initializing Chat') | |
args = parse_args() | |
assert args.dummy or (args.cfg_path is not None), "Invalid Config! Set --dummy or configurate the cfg_path!" | |
device = 'cuda'.format(args.gpu_id) if torch.cuda.is_available() else 'cpu' | |
if not args.dummy: | |
cfg = Config(args) | |
# Create processors | |
vis_processor_cfg = cfg.datasets_cfg.default.vis_processor.eval | |
aud_processor_cfg = cfg.datasets_cfg.default.audio_processor.eval | |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
aud_processor = registry.get_processor_class(aud_processor_cfg.name).from_config(aud_processor_cfg) | |
processors = {ModalityType.VISION: vis_processor, ModalityType.AUDIO: aud_processor} | |
# Create model | |
model_config = cfg.model_cfg | |
model_config.device_8bit = device | |
model_cls = registry.get_model_class(model_config.arch) | |
model = model_cls.from_config(model_config).to(device) | |
chat = Chat(model, processors, device=device) | |
else: | |
model = None | |
chat = DummyChat() | |
match = MatchModule(model='gpt-3.5-turbo') | |
tagging_module = TaggingModule(device=device) | |
grounding_dino = GroundingModule(device=device) | |
print('Initialization Finished') | |
# ======================================== | |
# Gradio Setting | |
# ======================================== | |
def gradio_reset(chat_state, emb_list): | |
if chat_state is not None: | |
chat_state.messages = [] | |
if emb_list is not None: | |
emb_list = [] | |
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=False), \ | |
gr.update(value=None, interactive=True), \ | |
gr.update(placeholder='Please upload your image/audio first', interactive=False), \ | |
gr.update(value=None), \ | |
gr.update(value="Upload & Start Chat", interactive=True), \ | |
chat_state, emb_list, gr.update(value={}) | |
def upload_x(gr_img, gr_aud, chat_state): | |
if gr_img is None and gr_aud is None: | |
return None, None, None, gr.update(interactive=True), chat_state, None, {} | |
chat_state = CONV_X.copy() | |
emb_list = [] | |
if gr_img is not None: | |
chat.upload_img(gr_img, chat_state, emb_list) | |
state = { | |
'tags': tagging_module(gr_img) | |
} | |
# print(state) | |
else: | |
state = {} | |
if gr_aud is not None: | |
chat.upload_aud(gr_aud, chat_state, emb_list) | |
return gr.update(interactive=False), gr.update(interactive=False), \ | |
gr.update(interactive=True, placeholder='Type and press Enter'), \ | |
gr.update(value="Start Chatting", interactive=False), \ | |
chat_state, emb_list, state | |
def gradio_ask(user_message, chatbot, chat_state, text_output, last_answer): | |
if len(user_message) == 0: | |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state, \ | |
gr.update(value=None, color_map=None, show_legend=False), gr.update(value=None) | |
if last_answer is not None: | |
chatbot[-1][1] = last_answer | |
chat.ask(user_message, chat_state) | |
if text_output is not None: | |
os.makedirs('results', exist_ok=True) | |
# print("****** Text output is:", text_output) | |
chatbot[-1][1] = ''.join(map(lambda x: x[0], text_output)) | |
chatbot = chatbot + [[user_message, None]] | |
return '', chatbot, chat_state, gr.update(value=None, color_map=None, show_legend=False), gr.update(value=None) | |
def gradio_answer(image, chatbot, chat_state, emb_list, num_beams, temperature, entity_state): | |
llm_message = chat.answer(conversation=chat_state, | |
emb_list=emb_list, | |
num_beams=num_beams, | |
temperature=temperature, | |
max_new_tokens=300, | |
max_length=2000)[0] | |
if image is not None: | |
# new_entity_state = entity_state.value() | |
# new_entity_state.update({"answer": llm_message}) | |
entity_state["answer"] = llm_message | |
rich_text, match_state, color_map = match(llm_message, entity_state) | |
print("Original Color Map: ", color_map) | |
color_map = {key: LIGHTER_COLOR_MAP_HEX[color_map[key]] for key in color_map} | |
print("Modified Color Map: ", color_map) | |
chatbot[-1][1] = "The answer can be found in the textbox below and I'm trying my best to highlight the " \ | |
"corresponding region on the image." | |
# new_entity_state.update({"match_state": match_state}) | |
entity_state['match_state'] = match_state # item_id -> local_id | |
new_grounded_image = grounding_dino.draw(image, entity_state) | |
show_legend = bool(match_state) | |
print('gradio_answer ==> current state: ', entity_state) | |
# if args.ground_all: | |
# ground_img, local_results = grounding_dino.prompt2mask(image, | |
# '.'.join(map(lambda x: x, state['entity'])), | |
# state=state) | |
# else: | |
# ground_img = None | |
return chatbot, chat_state, emb_list, \ | |
gr.update(value=rich_text, color_map=color_map, show_legend=show_legend), \ | |
gr.update(value=entity_state), \ | |
gr.update(value=llm_message), gr.update(value=new_grounded_image) | |
else: | |
chatbot[-1][1] = llm_message | |
return chatbot, chat_state, emb_list, \ | |
gr.update(value=None), \ | |
entity_state, \ | |
gr.update(value=None), gr.update(value=None) | |
def grounding_fn(image, chatbot, entity_state): | |
# print("Grounding fn: ", entity_state) | |
if image and entity_state: | |
ground_img, local_results = grounding_dino.prompt2mask2( | |
image, ','.join(map(lambda x: x, entity_state['tags'])), state=entity_state | |
) | |
entity_state['grounding'] = { | |
'full': ground_img, | |
'local': local_results | |
} | |
print('grounding_fn ==> current state: ', entity_state) | |
return chatbot, gr.update(value=ground_img, interactive=False), entity_state | |
return chatbot, gr.update(value=None, interactive=False), entity_state | |
def select_fn(image, ground_img, entity_state, evt: gr.SelectData): | |
if image is None: | |
return gr.update(value=None, interactive=False) | |
item, label = evt.value[0], evt.value[1] | |
if label is None: | |
return ground_img | |
print('select_fn ==> current state: ', entity_state) | |
torch.cuda.synchronize() | |
if 'grounding' not in entity_state: | |
ground_img, local_results = grounding_dino.prompt2mask2(image, | |
','.join(map(lambda x: x[0], entity_state['tags'])), | |
state=entity_state) | |
entity_state['grounding'] = { | |
'full': ground_img, | |
'local': local_results | |
} | |
# local_img = entity_state['grounding']['local'][entity]['image'] | |
# print("DEBUG INFO: ", entity_state) | |
local_img = grounding_dino.draw(image, entity_state, item.lower()) | |
return gr.update(value=local_img, interactive=False) | |
title = """<h1 align="center">Demo of BuboGPT</h1>""" | |
description = """<h3>This is the demo of BuboGPT. Upload and start chatting!</h3>""" | |
# article = """<p><a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://raw.githubusercontent.com/Vision-CAIR/MiniGPT-4/main/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p> | |
# """ | |
# TODO show examples below | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
# gr.Markdown(article) | |
with gr.Row(): | |
with gr.Column(scale=0.5): | |
image = gr.Image(type="pil") | |
grounded_image = gr.Image(type="pil", interactive=False) | |
audio = gr.Audio() | |
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") | |
clear = gr.Button("Restart") | |
num_beams = gr.Slider( | |
minimum=1, | |
maximum=10, | |
value=1, | |
step=1, | |
interactive=True, | |
label="beam search numbers", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
with gr.Column(): | |
chat_state = gr.State() | |
last_answer = gr.State() | |
entity_state = gr.State(value={}) | |
emb_list = gr.State() | |
chatbot = gr.Chatbot(label='BuboGPT') | |
text_output = gr.HighlightedText(value=None, label="Response", show_legend=False) | |
text_input = gr.Textbox(label='User', placeholder='Please upload your image/audio first', interactive=False) | |
upload_button.click( | |
upload_x, [image, audio, chat_state], | |
[image, audio, text_input, upload_button, chat_state, emb_list, entity_state]).then( | |
grounding_fn, | |
[image, chatbot, entity_state], | |
[chatbot, grounded_image, entity_state] | |
) | |
text_input.submit(gradio_ask, | |
[text_input, chatbot, chat_state, text_output, last_answer], | |
[text_input, chatbot, chat_state, text_output, last_answer] | |
).then( | |
gradio_answer, | |
[image, chatbot, chat_state, emb_list, num_beams, temperature, entity_state], | |
[chatbot, chat_state, emb_list, text_output, entity_state, last_answer, grounded_image] | |
) | |
clear.click(gradio_reset, | |
[chat_state, emb_list], | |
[chatbot, image, grounded_image, audio, text_input, text_output, | |
upload_button, chat_state, emb_list, entity_state], | |
queue=False) | |
text_output.select( | |
select_fn, | |
[image, grounded_image, entity_state], | |
[grounded_image] | |
) | |
demo.launch(enable_queue=True) | |