ikuinen99's picture
update
e4bd7f9
raw
history blame
16.3 kB
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR model and criterion classes.
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
import copy
from typing import List
import torch
import torch.nn.functional as F
from torch import nn
from groundingdino.util import get_tokenlizer
from groundingdino.util.misc import (
NestedTensor,
inverse_sigmoid,
nested_tensor_from_tensor_list,
)
from groundingdino.models.GroundingDINO.backbone import build_backbone
from groundingdino.models.GroundingDINO.bertwarper import (
BertModelWarper,
generate_masks_with_special_tokens_and_transfer_map,
)
from groundingdino.models.GroundingDINO.transformer import build_transformer
from groundingdino.models.GroundingDINO.utils import MLP, ContrastiveEmbed
class GroundingDINO(nn.Module):
"""This is the Cross-Attention Detector module that performs object detection"""
def __init__(
self,
backbone,
transformer,
num_queries,
aux_loss=False,
iter_update=False,
query_dim=2,
num_feature_levels=1,
nheads=8,
# two stage
two_stage_type="no", # ['no', 'standard']
dec_pred_bbox_embed_share=True,
two_stage_class_embed_share=True,
two_stage_bbox_embed_share=True,
num_patterns=0,
dn_number=100,
dn_box_noise_scale=0.4,
dn_label_noise_ratio=0.5,
dn_labelbook_size=100,
text_encoder_type="bert-base-uncased",
sub_sentence_present=True,
max_text_len=256,
):
"""Initializes the model.
Parameters:
backbone: torch module of the backbone to be used. See backbone.py
transformer: torch module of the transformer architecture. See transformer.py
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
"""
super().__init__()
self.num_queries = num_queries
self.transformer = transformer
self.hidden_dim = hidden_dim = transformer.d_model
self.num_feature_levels = num_feature_levels
self.nheads = nheads
self.max_text_len = 256
self.sub_sentence_present = sub_sentence_present
# setting query dim
self.query_dim = query_dim
assert query_dim == 4
# for dn training
self.num_patterns = num_patterns
self.dn_number = dn_number
self.dn_box_noise_scale = dn_box_noise_scale
self.dn_label_noise_ratio = dn_label_noise_ratio
self.dn_labelbook_size = dn_labelbook_size
# bert
# print("Text Encoder Type is ", text_encoder_type)
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
self.bert.pooler.dense.weight.requires_grad_(False)
self.bert.pooler.dense.bias.requires_grad_(False)
self.bert = BertModelWarper(bert_model=self.bert)
self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True)
nn.init.constant_(self.feat_map.bias.data, 0)
nn.init.xavier_uniform_(self.feat_map.weight.data)
# freeze
# special tokens
self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"])
# prepare input projection layers
if num_feature_levels > 1:
num_backbone_outs = len(backbone.num_channels)
input_proj_list = []
for _ in range(num_backbone_outs):
in_channels = backbone.num_channels[_]
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
)
)
for _ in range(num_feature_levels - num_backbone_outs):
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(32, hidden_dim),
)
)
in_channels = hidden_dim
self.input_proj = nn.ModuleList(input_proj_list)
else:
assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!"
self.input_proj = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
)
]
)
self.backbone = backbone
self.aux_loss = aux_loss
self.box_pred_damping = box_pred_damping = None
self.iter_update = iter_update
assert iter_update, "Why not iter_update?"
# prepare pred layers
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
# prepare class & box embed
_class_embed = ContrastiveEmbed()
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
if dec_pred_bbox_embed_share:
box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)]
else:
box_embed_layerlist = [
copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)
]
class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)]
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
self.class_embed = nn.ModuleList(class_embed_layerlist)
self.transformer.decoder.bbox_embed = self.bbox_embed
self.transformer.decoder.class_embed = self.class_embed
# two stage
self.two_stage_type = two_stage_type
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
two_stage_type
)
if two_stage_type != "no":
if two_stage_bbox_embed_share:
assert dec_pred_bbox_embed_share
self.transformer.enc_out_bbox_embed = _bbox_embed
else:
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
if two_stage_class_embed_share:
assert dec_pred_bbox_embed_share
self.transformer.enc_out_class_embed = _class_embed
else:
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
self.refpoint_embed = None
self._reset_parameters()
def _reset_parameters(self):
# init input_proj
for proj in self.input_proj:
nn.init.xavier_uniform_(proj[0].weight, gain=1)
nn.init.constant_(proj[0].bias, 0)
def init_ref_points(self, use_num_queries):
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
def forward(self, samples: NestedTensor, targets: List = None, **kw):
"""The forward expects a NestedTensor, which consists of:
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
It returns a dict with the following elements:
- "pred_logits": the classification logits (including no-object) for all queries.
Shape= [batch_size x num_queries x num_classes]
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
(center_x, center_y, width, height). These values are normalized in [0, 1],
relative to the size of each individual image (disregarding possible padding).
See PostProcess for information on how to retrieve the unnormalized bounding box.
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
if targets is None:
captions = kw["captions"]
else:
captions = [t["caption"] for t in targets]
len(captions)
# encoder texts
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
samples.device
)
(
text_self_attention_masks,
position_ids,
cate_to_token_mask_list,
) = generate_masks_with_special_tokens_and_transfer_map(
tokenized, self.specical_tokens, self.tokenizer
)
if text_self_attention_masks.shape[1] > self.max_text_len:
text_self_attention_masks = text_self_attention_masks[
:, : self.max_text_len, : self.max_text_len
]
position_ids = position_ids[:, : self.max_text_len]
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len]
tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len]
# extract text embeddings
if self.sub_sentence_present:
tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"}
tokenized_for_encoder["attention_mask"] = text_self_attention_masks
tokenized_for_encoder["position_ids"] = position_ids
else:
# import ipdb; ipdb.set_trace()
tokenized_for_encoder = tokenized
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model
text_token_mask = tokenized.attention_mask.bool() # bs, 195
# text_token_mask: True for nomask, False for mask
# text_self_attention_masks: True for nomask, False for mask
if encoded_text.shape[1] > self.max_text_len:
encoded_text = encoded_text[:, : self.max_text_len, :]
text_token_mask = text_token_mask[:, : self.max_text_len]
position_ids = position_ids[:, : self.max_text_len]
text_self_attention_masks = text_self_attention_masks[
:, : self.max_text_len, : self.max_text_len
]
text_dict = {
"encoded_text": encoded_text, # bs, 195, d_model
"text_token_mask": text_token_mask, # bs, 195
"position_ids": position_ids, # bs, 195
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195
}
# import ipdb; ipdb.set_trace()
if isinstance(samples, (list, torch.Tensor)):
samples = nested_tensor_from_tensor_list(samples)
features, poss = self.backbone(samples)
srcs = []
masks = []
for l, feat in enumerate(features):
src, mask = feat.decompose()
srcs.append(self.input_proj[l](src))
masks.append(mask)
assert mask is not None
if self.num_feature_levels > len(srcs):
_len_srcs = len(srcs)
for l in range(_len_srcs, self.num_feature_levels):
if l == _len_srcs:
src = self.input_proj[l](features[-1].tensors)
else:
src = self.input_proj[l](srcs[-1])
m = samples.mask
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
srcs.append(src)
masks.append(mask)
poss.append(pos_l)
input_query_bbox = input_query_label = attn_mask = dn_meta = None
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
)
# deformable-detr-like anchor update
outputs_coord_list = []
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
zip(reference[:-1], self.bbox_embed, hs)
):
layer_delta_unsig = layer_bbox_embed(layer_hs)
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
outputs_coord_list.append(layer_outputs_unsig)
outputs_coord_list = torch.stack(outputs_coord_list)
# output
outputs_class = torch.stack(
[
layer_cls_embed(layer_hs, text_dict)
for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
]
)
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
# # for intermediate outputs
# if self.aux_loss:
# out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list)
# # for encoder output
# if hs_enc is not None:
# # prepare intermediate outputs
# interm_coord = ref_enc[-1]
# interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
# out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
# out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [
{"pred_logits": a, "pred_boxes": b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
]
def build_groundingdino(args):
backbone = build_backbone(args)
transformer = build_transformer(args)
dn_labelbook_size = args.dn_labelbook_size
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
sub_sentence_present = args.sub_sentence_present
model = GroundingDINO(
backbone,
transformer,
num_queries=args.num_queries,
aux_loss=True,
iter_update=True,
query_dim=4,
num_feature_levels=args.num_feature_levels,
nheads=args.nheads,
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
two_stage_type=args.two_stage_type,
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
two_stage_class_embed_share=args.two_stage_class_embed_share,
num_patterns=args.num_patterns,
dn_number=0,
dn_box_noise_scale=args.dn_box_noise_scale,
dn_label_noise_ratio=args.dn_label_noise_ratio,
dn_labelbook_size=dn_labelbook_size,
text_encoder_type=args.text_encoder_type,
sub_sentence_present=sub_sentence_present,
max_text_len=args.max_text_len,
)
return model