BuboGPT / grounding_model.py
ikuinen99's picture
update
e4bd7f9
raw
history blame
17.6 kB
import PIL
import numpy as np
import torch
import torch.nn as nn
import torchvision
from yacs.config import CfgNode as CN
from PIL import ImageDraw
from segment_anything import build_sam, SamPredictor
from segment_anything.utils.amg import remove_small_regions
from PIL import ImageDraw, ImageFont
import groundingdino.util.transforms as T
from constants.constant import DARKER_COLOR_MAP, LIGHTER_COLOR_MAP, COLORS
from groundingdino import build_groundingdino
from groundingdino.util.predict import predict
from groundingdino.util.utils import clean_state_dict
def load_groundingdino_model(model_config_path, model_checkpoint_path):
args = CN.load_cfg(open(model_config_path, "r"))
model = build_groundingdino(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print('loading GroundingDINO:', load_res)
_ = model.eval()
return model
class GroundingModule(nn.Module):
def __init__(self, device='cpu'):
super().__init__()
self.device = device
sam_checkpoint = "./checkpoints/sam_vit_h_4b8939.pth"
groundingdino_checkpoint = "./checkpoints/groundingdino_swint_ogc.pth"
groundingdino_config_file = "./eval_configs/GroundingDINO_SwinT_OGC.yaml"
self.grounding_model = load_groundingdino_model(groundingdino_config_file,
groundingdino_checkpoint).to(device)
self.grounding_model.eval()
sam = build_sam(checkpoint=sam_checkpoint).to(device)
sam.eval()
self.sam_predictor = SamPredictor(sam)
@torch.no_grad()
def prompt2mask(self, original_image, prompt, state, box_threshold=0.35, text_threshold=0.25, num_boxes=10):
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
image_np = np.array(original_image, dtype=np.uint8)
prompt = prompt.lower()
prompt = prompt.strip()
if not prompt.endswith("."):
prompt = prompt + "."
_, image_tensor = image_transform_grounding(original_image)
print('==> Box grounding with "{}"...'.format(prompt))
with torch.cuda.amp.autocast(enabled=True):
boxes, logits, phrases = predict(self.grounding_model,
image_tensor, prompt, box_threshold, text_threshold, device=self.device)
print(phrases)
# from PIL import Image, ImageDraw, ImageFont
H, W = original_image.size[1], original_image.size[0]
draw_img = original_image.copy()
draw = ImageDraw.Draw(draw_img)
color_boxes = []
color_masks = []
local_results = [original_image.copy() for _ in range(len(state['entity']))]
local2entity = {}
for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
for i, s in enumerate(state['entity']):
# print(label.lower(), i[0].lower(), label.lower() == i[0].lower())
if label.lower() == s[0].lower():
local2entity[obj_ind] = i
break
if obj_ind not in local2entity:
print('Color not found', label)
color = "grey" # In grey mode.
# tuple(np.random.randint(0, 255, size=3).tolist())
else:
for i, s in enumerate(state['entity']):
# print(label.lower(), i[0].lower(), label.lower() == i[0].lower())
if label.lower() == s[0].lower():
local2entity[obj_ind] = i
break
if obj_ind not in local2entity:
print('Color not found', label)
color = tuple(np.random.randint(0, 255, size=3).tolist())
else:
color = state['entity'][local2entity[obj_ind]][3]
color_boxes.append(color)
print(color_boxes)
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=10)
# font = ImageFont.load_default()
font = ImageFont.truetype('InputSans-Regular.ttf', int(H / 512.0 * 30))
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white", font=font)
if obj_ind in local2entity:
local_draw = ImageDraw.Draw(local_results[local2entity[obj_ind]])
local_draw.rectangle([x0, y0, x1, y1], outline=color, width=10)
local_draw.rectangle(bbox, fill=color)
local_draw.text((x0, y0), str(label), fill="white", font=font)
if boxes.size(0) > 0:
print('==> Mask grounding...')
boxes = boxes * torch.Tensor([W, H, W, H])
boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
self.sam_predictor.set_image(image_np)
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes, image_np.shape[:2])
with torch.cuda.amp.autocast(enabled=True):
masks, _, _ = self.sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(self.device),
multimask_output=False,
)
# remove small disconnected regions and holes
fine_masks = []
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
masks = torch.from_numpy(masks)
num_obj = min(len(logits), num_boxes)
mask_map = None
full_img = None
for obj_ind in range(num_obj):
# box = boxes[obj_ind]
m = masks[obj_ind][0]
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
mask_map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
local_image = np.zeros((m.shape[0], m.shape[1], 3))
mask_map[m != 0] = obj_ind + 1
# color_mask = np.random.random((1, 3)).tolist()[0]
color_mask = np.array(color_boxes[obj_ind]) / 255.0
full_img[m != 0] = color_mask
local_image[m != 0] = color_mask
# if local_results[local2entity[obj_ind]] is not None:
# local_image[m == 0] = np.asarray(local_results[local2entity[obj_ind]])[m == 0]
local_image = (local_image * 255).astype(np.uint8)
local_image = PIL.Image.fromarray(local_image)
if local_results[local2entity[obj_ind]] is not None:
local_results[local2entity[obj_ind]] = PIL.Image.blend(local_results[local2entity[obj_ind]],
local_image, 0.5)
full_img = (full_img * 255).astype(np.uint8)
full_img = PIL.Image.fromarray(full_img)
draw_img = PIL.Image.blend(draw_img, full_img, 0.5)
return draw_img, local_results
# def draw_text(self, entity_state, entity, text):
# local_img = entity_state['grounding']['local'][entity]['image'].copy()
# H, W = local_img.width, local_img.height
# font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
#
# for x0, y0 in entity_state['grounding']['local'][entity]['text_positions']:
# color = entity_state['grounding']['local'][entity]['color']
# local_draw = ImageDraw.Draw(local_img)
# if hasattr(font, "getbbox"):
# bbox = local_draw.textbbox((x0, y0), str(text), font)
# else:
# w, h = local_draw.textsize(str(text), font)
# bbox = (x0, y0, w + x0, y0 + h)
#
# local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
# local_draw.text((x0, y0), str(text), fill="white", font=font)
# return local_img
def draw(self, original_image, entity_state, item=None):
original_image = original_image.copy()
W, H = original_image.width, original_image.height
font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
local_image = np.zeros((H, W, 3))
local_mask = np.zeros((H, W), dtype=bool)
def draw_item(img, item):
nonlocal local_image, local_mask
entity = entity_state['match_state'][item]
ei = entity_state['grounding']['local'][entity]
color = ei['color']
local_draw = ImageDraw.Draw(img)
for x0, y0, x1, y1 in ei['entity_positions']:
local_draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color],
width=int(min(H, W) / 512.0 * 10))
for x0, y0 in ei['text_positions']:
if hasattr(font, "getbbox"):
bbox = local_draw.textbbox((x0, y0), str(item), font)
else:
w, h = local_draw.textsize(str(item), font)
bbox = (x0, y0, w + x0, y0 + h)
local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
local_draw.text((x0, y0), str(item), fill="white", font=font)
for m in ei['masks']:
local_image[m != 0] = np.array(LIGHTER_COLOR_MAP[color]) / 255.0
local_mask = np.logical_or(local_mask, m)
# local_image = (local_image * 255).astype(np.uint8)
# local_image = PIL.Image.fromarray(local_image)
# img = PIL.Image.blend(img, local_image, 0.5)
return img
if item is None:
for item in entity_state['match_state'].keys():
original_image = draw_item(original_image, item)
else:
original_image = draw_item(original_image, item)
local_image[local_mask == 0] = (np.array(original_image) / 255.0)[local_mask == 0]
local_image = (local_image * 255).astype(np.uint8)
local_image = PIL.Image.fromarray(local_image)
original_image = PIL.Image.blend(original_image, local_image, 0.5)
return original_image
@torch.no_grad()
def prompt2mask2(self, original_image, prompt, state, box_threshold=0.25,
text_threshold=0.2, iou_threshold=0.5, num_boxes=10):
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
image_np = np.array(original_image, dtype=np.uint8)
prompt = prompt.lower()
prompt = prompt.strip()
if not prompt.endswith("."):
prompt = prompt + "."
_, image_tensor = image_transform_grounding(original_image)
print('==> Box grounding with "{}"...'.format(prompt))
with torch.cuda.amp.autocast(enabled=True):
boxes, logits, phrases = predict(self.grounding_model,
image_tensor, prompt, box_threshold, text_threshold, device=self.device)
print('==> Box grounding results {}...'.format(phrases))
# boxes_filt = boxes.cpu()
# # use NMS to handle overlapped boxes
# print(f"==> Before NMS: {boxes_filt.shape[0]} boxes")
# nms_idx = torchvision.ops.nms(boxes_filt, logits, iou_threshold).numpy().tolist()
# boxes_filt = boxes_filt[nms_idx]
# phrases = [phrases[idx] for idx in nms_idx]
# print(f"==> After NMS: {boxes_filt.shape[0]} boxes")
# boxes = boxes_filt
# from PIL import Image, ImageDraw, ImageFont
H, W = original_image.size[1], original_image.size[0]
draw_img = original_image.copy()
draw = ImageDraw.Draw(draw_img)
color_boxes = []
color_masks = []
entity_dict = {}
for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
if label not in entity_dict:
entity_dict[label] = {
'color': COLORS[len(entity_dict) % (len(COLORS) - 1)],
# 'image': original_image.copy(),
'text_positions': [],
'entity_positions': [],
'masks': []
}
color = entity_dict[label]['color']
color_boxes.append(DARKER_COLOR_MAP[color])
color_masks.append(LIGHTER_COLOR_MAP[color])
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color], width=10)
font = ImageFont.truetype('InputSans-Regular.ttf', int(min(H, W) / 512.0 * 30))
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
draw.text((x0, y0), str(label), fill="white", font=font)
# local_img = entity_dict[label]['image']
# local_draw = ImageDraw.Draw(local_img)
# local_draw.rectangle([x0, y0, x1, y1], outline=DARKER_COLOR_MAP[color], width=10)
entity_dict[label]['text_positions'].append((x0, y0))
entity_dict[label]['entity_positions'].append((x0, y0, x1, y1))
# local_draw.rectangle(bbox, fill=DARKER_COLOR_MAP[color])
# local_draw.text((x0, y0), str(label), fill="white", font=font)
if boxes.size(0) > 0:
print('==> Mask grounding...')
boxes = boxes * torch.Tensor([W, H, W, H])
boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
self.sam_predictor.set_image(image_np)
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes,
image_np.shape[:2]).to(self.device)
with torch.cuda.amp.autocast(enabled=True):
masks, _, _ = self.sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(self.device),
multimask_output=False,
)
# remove small disconnected regions and holes
fine_masks = []
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
masks = torch.from_numpy(masks)
mask_map = None
full_img = None
for obj_ind, (box, label) in enumerate(zip(boxes, phrases)):
m = masks[obj_ind][0]
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
mask_map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
# local_image = np.zeros((m.shape[0], m.shape[1], 3))
mask_map[m != 0] = obj_ind + 1
color_mask = np.array(color_masks[obj_ind]) / 255.0
full_img[m != 0] = color_mask
entity_dict[label]['masks'].append(m)
# local_image[m != 0] = color_mask
# local_image[m == 0] = (np.array(entity_dict[label]['image']) / 255.0)[m == 0]
#
# local_image = (local_image * 255).astype(np.uint8)
# local_image = PIL.Image.fromarray(local_image)
# entity_dict[label]['image'] = PIL.Image.blend(entity_dict[label]['image'], local_image, 0.5)
full_img = (full_img * 255).astype(np.uint8)
full_img = PIL.Image.fromarray(full_img)
draw_img = PIL.Image.blend(draw_img, full_img, 0.5)
print('==> Entity list: {}'.format(list(entity_dict.keys())))
return draw_img, entity_dict