BuboGPT / app.py
ikuinen99's picture
update
411cfb5
raw
history blame
12.4 kB
import argparse
import os
import random
# import sys
# import os
#
# BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# sys.path.append(BASE_DIR)
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from constants.constant import LIGHTER_COLOR_MAP_HEX
# NOTE: Must import LlamaTokenizer before `bubogpt.common.config`
# otherwise, it will cause seg fault when `llama_tokenizer.decode` is called
from grounding_model import GroundingModule
from match import MatchModule
from bubogpt.common.config import Config
from bubogpt.common.dist_utils import get_rank
from bubogpt.common.registry import registry
from eval_scripts.conversation import Chat, CONV_X, DummyChat
# NOTE&TODO: put this before bubogpt import will cause circular import
# possibly because `imagebind` imports `bubogpt` and `bubogpt` also imports `imagebind`
from imagebind.models.image_bind import ModalityType
# from ner import NERModule
from tagging_model import TaggingModule
def parse_args():
parser = argparse.ArgumentParser(description="Qualitative")
parser.add_argument("--cfg-path", help="path to configuration file.", default='./eval_configs/mmgpt4_eval.yaml')
parser.add_argument("--dummy", action="store_true", help="Debug Mode")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
parser.add_argument("--ground-all", action="store_true")
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
assert args.dummy or (args.cfg_path is not None), "Invalid Config! Set --dummy or configurate the cfg_path!"
device = 'cuda:{}'.format(args.gpu_id) if torch.cuda.is_available() else 'cpu'
if not args.dummy:
cfg = Config(args)
# Create processors
vis_processor_cfg = cfg.datasets_cfg.default.vis_processor.eval
aud_processor_cfg = cfg.datasets_cfg.default.audio_processor.eval
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
aud_processor = registry.get_processor_class(aud_processor_cfg.name).from_config(aud_processor_cfg)
processors = {ModalityType.VISION: vis_processor, ModalityType.AUDIO: aud_processor}
# Create model
model_config = cfg.model_cfg
model_config.device_8bit = device
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to(device)
chat = Chat(model, processors, device=device)
else:
model = None
chat = DummyChat()
match = MatchModule(model='gpt-3.5-turbo')
tagging_module = TaggingModule(device=device)
grounding_dino = GroundingModule(device=device)
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, emb_list):
if chat_state is not None:
chat_state.messages = []
if emb_list is not None:
emb_list = []
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=False), \
gr.update(value=None, interactive=True), \
gr.update(placeholder='Please upload your image/audio first', interactive=False), \
gr.update(value=None), \
gr.update(value="Upload & Start Chat", interactive=True), \
chat_state, emb_list, gr.update(value={})
def upload_x(gr_img, gr_aud, chat_state):
if gr_img is None and gr_aud is None:
return None, None, None, gr.update(interactive=True), chat_state, None, {}
chat_state = CONV_X.copy()
emb_list = []
if gr_img is not None:
chat.upload_img(gr_img, chat_state, emb_list)
state = {
'tags': tagging_module(gr_img)
}
# print(state)
else:
state = {}
if gr_aud is not None:
chat.upload_aud(gr_aud, chat_state, emb_list)
return gr.update(interactive=False), gr.update(interactive=False), \
gr.update(interactive=True, placeholder='Type and press Enter'), \
gr.update(value="Start Chatting", interactive=False), \
chat_state, emb_list, state
def gradio_ask(user_message, chatbot, chat_state, text_output, last_answer):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state, \
gr.update(value=None, color_map=None, show_legend=False), gr.update(value=None)
if last_answer is not None:
chatbot[-1][1] = last_answer
chat.ask(user_message, chat_state)
if text_output is not None:
os.makedirs('results', exist_ok=True)
# print("****** Text output is:", text_output)
chatbot[-1][1] = ''.join(map(lambda x: x[0], text_output))
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state, gr.update(value=None, color_map=None, show_legend=False), gr.update(value=None)
def gradio_answer(image, chatbot, chat_state, emb_list, num_beams, temperature, entity_state):
llm_message = chat.answer(conversation=chat_state,
emb_list=emb_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
if image is not None:
# new_entity_state = entity_state.value()
# new_entity_state.update({"answer": llm_message})
entity_state["answer"] = llm_message
rich_text, match_state, color_map = match(llm_message, entity_state)
print("Original Color Map: ", color_map)
color_map = {key: LIGHTER_COLOR_MAP_HEX[color_map[key]] for key in color_map}
print("Modified Color Map: ", color_map)
chatbot[-1][1] = "The answer can be found in the textbox below and I'm trying my best to highlight the " \
"corresponding region on the image."
# new_entity_state.update({"match_state": match_state})
entity_state['match_state'] = match_state # item_id -> local_id
new_grounded_image = grounding_dino.draw(image, entity_state)
show_legend = bool(match_state)
print('gradio_answer ==> current state: ', entity_state)
# if args.ground_all:
# ground_img, local_results = grounding_dino.prompt2mask(image,
# '.'.join(map(lambda x: x, state['entity'])),
# state=state)
# else:
# ground_img = None
return chatbot, chat_state, emb_list, \
gr.update(value=rich_text, color_map=color_map, show_legend=show_legend), \
gr.update(value=entity_state), \
gr.update(value=llm_message), gr.update(value=new_grounded_image)
else:
chatbot[-1][1] = llm_message
return chatbot, chat_state, emb_list, \
gr.update(value=None), \
entity_state, \
gr.update(value=None), gr.update(value=None)
def grounding_fn(image, chatbot, entity_state):
# print("Grounding fn: ", entity_state)
if image and entity_state:
ground_img, local_results = grounding_dino.prompt2mask2(
image, ','.join(map(lambda x: x, entity_state['tags'])), state=entity_state
)
entity_state['grounding'] = {
'full': ground_img,
'local': local_results
}
print('grounding_fn ==> current state: ', entity_state)
return chatbot, gr.update(value=ground_img, interactive=False), entity_state
return chatbot, gr.update(value=None, interactive=False), entity_state
def select_fn(image, ground_img, entity_state, evt: gr.SelectData):
if image is None:
return gr.update(value=None, interactive=False)
item, label = evt.value[0], evt.value[1]
if label is None:
return ground_img
print('select_fn ==> current state: ', entity_state)
torch.cuda.synchronize()
if 'grounding' not in entity_state:
ground_img, local_results = grounding_dino.prompt2mask2(image,
','.join(map(lambda x: x[0], entity_state['tags'])),
state=entity_state)
entity_state['grounding'] = {
'full': ground_img,
'local': local_results
}
# local_img = entity_state['grounding']['local'][entity]['image']
# print("DEBUG INFO: ", entity_state)
local_img = grounding_dino.draw(image, entity_state, item.lower())
return gr.update(value=local_img, interactive=False)
title = """<h1 align="center">Demo of BuboGPT</h1>"""
description = """<h3>This is the demo of BuboGPT. Upload and start chatting!</h3>"""
# article = """<p><a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://raw.githubusercontent.com/Vision-CAIR/MiniGPT-4/main/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>
# """
# TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
# gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
grounded_image = gr.Image(type="pil", interactive=False)
audio = gr.Audio()
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
chat_state = gr.State()
last_answer = gr.State()
entity_state = gr.State(value={})
emb_list = gr.State()
chatbot = gr.Chatbot(label='BuboGPT')
text_output = gr.HighlightedText(value=None, label="Response", show_legend=False)
text_input = gr.Textbox(label='User', placeholder='Please upload your image/audio first', interactive=False)
upload_button.click(
upload_x, [image, audio, chat_state],
[image, audio, text_input, upload_button, chat_state, emb_list, entity_state]).then(
grounding_fn,
[image, chatbot, entity_state],
[chatbot, grounded_image, entity_state]
)
text_input.submit(gradio_ask,
[text_input, chatbot, chat_state, text_output, last_answer],
[text_input, chatbot, chat_state, text_output, last_answer]
).then(
gradio_answer,
[image, chatbot, chat_state, emb_list, num_beams, temperature, entity_state],
[chatbot, chat_state, emb_list, text_output, entity_state, last_answer, grounded_image]
)
clear.click(gradio_reset,
[chat_state, emb_list],
[chatbot, image, grounded_image, audio, text_input, text_output,
upload_button, chat_state, emb_list, entity_state],
queue=False)
text_output.select(
select_fn,
[image, grounded_image, entity_state],
[grounded_image]
)
demo.launch(enable_queue=True)