Spaces:
Runtime error
Runtime error
import random | |
from typing import Dict, Tuple, List, Union | |
import torch | |
import torch.nn as nn | |
import re | |
from torch import Tensor | |
from transformers import LlamaTokenizer | |
from omegaconf import DictConfig | |
from imagebind.models.image_bind import imagebind_huge, ImageBindJoiner, ModalityType, replace_joiner_vision | |
from bubogpt.common.registry import registry | |
from bubogpt.models.blip2 import BaseModel | |
from bubogpt.models.modeling_llama import LlamaForCausalLM | |
def filter_prompt(input_embeds: Dict[str, Tensor], prompt_list: List[str]) -> List[str]: | |
if not prompt_list: | |
return prompt_list | |
input_modal_set = set([k.title() for k in input_embeds if input_embeds[k] is not None]) | |
prompt_modal_sets = [set(re.findall("<([^<>]+)><ModalityHere></\\1>", prompt)) for prompt in prompt_list] | |
results = [prompt_list[i] for i, prompt_modal_set in enumerate(prompt_modal_sets) if | |
prompt_modal_set == input_modal_set] | |
return results | |
def arrange_modalities(input_embeds: Dict[str, Tensor], prompt: str) -> List[Tensor]: | |
prompt_modalities = re.findall("<([^<>]+)><ModalityHere></\\1>", prompt) | |
return [input_embeds[modality.lower()] for modality in prompt_modalities] | |
def concat_all_embeddings(input_embeds: Dict[str, Tensor], dim: int) -> Tensor: | |
embeds = [input_embeds[key] for key in input_embeds if input_embeds[key] is not None] | |
return torch.cat(embeds, dim=dim) | |
def filter_modalities(inputs): | |
filtered_inputs = {} | |
for k in ModalityType.__dict__.values(): | |
if k in inputs: | |
filtered_inputs[k] = inputs[k] | |
return filtered_inputs | |
class MMGPT4(BaseModel): | |
""" | |
ImageBind GPT-LLAMA model. | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"pretrain_vicuna": "configs/models/mmgpt4.yaml", | |
} | |
def __init__( | |
self, | |
joiner_cfg: DictConfig, | |
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth", | |
freeze_imagebind=True, | |
freeze_qformer=False, | |
num_query_token=32, | |
llama_model="", | |
prompt_path="", | |
prompt_template="", | |
max_txt_len=128, | |
end_sym='\n', | |
low_resource=False, # use 8 bit and put vit in cpu | |
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore. | |
with_bind_head=False, | |
freeze_llm=True, | |
use_blip_vision=False, | |
proj_model="", | |
): | |
super().__init__() | |
assert not low_resource, "Low Resource Mode is Currently Unavailable." | |
self.low_resource = low_resource | |
print('Loading ImageBind') | |
self.multimodal_encoder = imagebind_huge(pretrained=True, freeze_imagebind=freeze_imagebind, | |
with_head=with_bind_head, use_blip_vision=use_blip_vision) | |
print('Loading ImageBind Done') | |
print(f'Loading LLAMA from {llama_model}') | |
self.llama_tokenizer = LlamaTokenizer.from_pretrained('magicr/vicuna-7b', use_fast=False, use_auth_token=True) | |
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token | |
self.llama_model = LlamaForCausalLM.from_pretrained('magicr/vicuna-7b', load_in_8bit=True, | |
torch_dtype=torch.float16, device_map="auto", use_auth_token=True) | |
if freeze_llm: | |
for name, param in self.llama_model.named_parameters(): | |
param.requires_grad = False | |
print('Loading LLAMA Done') | |
print('Loading Q-Former and Adapter/Projector') | |
self.multimodal_joiner = ImageBindJoiner(joiner_cfg, output_dim=self.llama_model.config.hidden_size) | |
if use_blip_vision: | |
replace_joiner_vision(self.multimodal_joiner, q_former_model, proj_model) | |
print('Loading Q-Former and Adapter/Projector Done') | |
self.max_txt_len = max_txt_len | |
self.end_sym = end_sym | |
print("Preparing Prompts") | |
self.prompt_template = prompt_template | |
if prompt_path: | |
with open(prompt_path, 'r') as f: | |
raw_prompts = f.read().splitlines() | |
self.prompt_list = [prompt_template.format(p) for p in raw_prompts] | |
print('Load {} training prompts'.format(len(self.prompt_list))) | |
print('Prompt Example \n{}'.format(random.choice(self.prompt_list))) | |
else: | |
self.prompt_list = [] | |
print("Preparing Prompts Done") | |
def maybe_autocast(self, dtype=torch.float16): | |
# if on cpu, don't use autocast | |
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16 | |
enable_autocast = self.device != torch.device("cpu") | |
if enable_autocast: | |
return torch.cuda.amp.autocast(dtype=dtype) | |
else: | |
import contextlib | |
return contextlib.nullcontext() | |
def encode_inputs(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]: | |
with self.maybe_autocast(): | |
imagebind_outputs = self.multimodal_encoder(inputs) | |
llama_inputs = self.multimodal_joiner(imagebind_outputs) | |
return llama_inputs | |
def prompt_wrap(self, inputs: Dict[str, Tensor], prompt: Union[str, list]) -> Tuple[Tensor, Tensor]: | |
if isinstance(prompt, (list, tuple)): | |
bs = list(inputs.values())[0].shape[0] | |
assert bs == len(prompt) | |
return self.batch_prompt_wrap(inputs, prompt) | |
elif isinstance(prompt, (str, type(None))): | |
return self.single_prompt_wrap(inputs, prompt) | |
else: | |
raise NotImplementedError(f"Prompt type: {type(prompt)} not supported.") | |
def single_prompt_wrap(self, inputs: Dict[str, Tensor], prompt: str) -> Tuple[Tensor, Tensor]: | |
if not prompt: | |
input_embeds = concat_all_embeddings(inputs, dim=1) | |
attns_input = torch.ones(input_embeds.size()[:-1], dtype=torch.long).to(input_embeds.device) | |
return input_embeds, attns_input | |
input_embeds_list = arrange_modalities(inputs, prompt) | |
batch_size = input_embeds_list[0].shape[0] | |
prompt_slices = prompt.split('<ModalityHere>') | |
prompt_tokens = [self.llama_tokenizer(prompt_slice, return_tensors="pt", add_special_tokens=False) | |
.to(input_embeds_list[0].device) for prompt_slice in prompt_slices] | |
prompt_embeds = [self.llama_model.model.embed_tokens(prompt_token.input_ids).expand(batch_size, -1, -1) | |
for prompt_token in prompt_tokens] | |
result_embeds = [emb for pair in zip(prompt_embeds[:-1], input_embeds_list) | |
for emb in pair] + [prompt_embeds[-1]] | |
wrapped_input_embeds = torch.cat(result_embeds, dim=1) | |
wrapped_atts_input = torch.ones(wrapped_input_embeds.size()[:-1], | |
dtype=torch.long).to(wrapped_input_embeds.device) | |
return wrapped_input_embeds, wrapped_atts_input | |
def batch_prompt_wrap(self, inputs: Dict[str, Tensor], prompts: List[str]) -> Tuple[Tensor, Tensor]: | |
device = list(inputs.values())[0].device | |
# This one only works for visual prompting | |
prompt_slices = [prompt.split('<ModalityHere>') for prompt in prompts] | |
slice_batch = list(zip(*prompt_slices)) | |
prompt_tokens = [self.llama_tokenizer(slice, | |
return_tensors="pt", | |
add_special_tokens=False, | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len).to(device) | |
for slice in slice_batch] | |
prompt_embeds = [self.llama_model.model.embed_tokens(prompt_token.input_ids) for prompt_token in prompt_tokens] | |
prompt_masks = [prompt_token.attention_mask for prompt_token in prompt_tokens] | |
# NOTE: assuming moalities are the same within a batch | |
input_embeds_list = arrange_modalities(inputs, prompts[0]) | |
input_mask_list = [torch.ones(input_embeds.size()[:-1], dtype=torch.long).to(device) for input_embeds in input_embeds_list] | |
result_embeds = [emb for pair in zip(prompt_embeds[:-1], input_embeds_list) for emb in pair] + [prompt_embeds[-1]] | |
result_masks = [mask for pair in zip(prompt_masks[:-1], input_mask_list) for mask in pair] + [prompt_masks[-1]] | |
wrapped_input_embeds = torch.cat(result_embeds, dim=1) | |
wrapped_atts_input = torch.cat(result_masks, dim=1) | |
return wrapped_input_embeds, wrapped_atts_input | |
def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]: | |
# filter `inputs` as it may contain informatioins other than modalities | |
modality_inputs = filter_modalities(inputs) | |
embeds = self.encode_inputs(modality_inputs) | |
filtered_prompts = filter_prompt(embeds, self.prompt_list) | |
if "prompt" in inputs: | |
assert isinstance(inputs["prompt"], (list, tuple)) | |
prompt = [self.prompt_template.format(p) for p in inputs["prompt"]] | |
elif filtered_prompts: | |
prompt = random.choice(filtered_prompts) | |
else: | |
prompt = None | |
# NOTE&TODO: add support for a list of prompts | |
input_embs, input_atts = self.prompt_wrap(embeds, prompt) | |
# NOTE: No modifications from the next line to the end. Except for the autocast part. | |
self.llama_tokenizer.padding_side = "right" | |
text = [t + self.end_sym for t in inputs["text_input"]] | |
to_regress_tokens = self.llama_tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
add_special_tokens=False | |
).to(input_embs.device) | |
targets = to_regress_tokens.input_ids.masked_fill( | |
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100 | |
) | |
empty_targets = ( | |
torch.ones([input_atts.shape[0], input_atts.shape[1] + 1], | |
dtype=torch.long).to(input_embs.device).fill_(-100) # plus one for bos | |
) | |
targets = torch.cat([empty_targets, targets], dim=1) | |
batch_size = input_embs.shape[0] | |
bos = torch.ones([batch_size, 1], | |
dtype=to_regress_tokens.input_ids.dtype, | |
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id | |
bos_embeds = self.llama_model.model.embed_tokens(bos) | |
atts_bos = input_atts[:, :1] | |
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids) | |
inputs_embeds = torch.cat([bos_embeds, input_embs, to_regress_embeds], dim=1) | |
attention_mask = torch.cat([atts_bos, input_atts, to_regress_tokens.attention_mask], dim=1) | |
with self.maybe_autocast(): | |
outputs = self.llama_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=targets, | |
) | |
loss = outputs.loss | |
return {"loss": loss} | |
def from_config(cls, cfg): | |
joiner_cfg = cfg.get("joiner_cfg") | |
q_former_model = cfg.get( | |
"q_former_model", | |
"checkpoints/blip2_pretrained_flant5xxl.pth", | |
) | |
num_query_token = cfg.get("num_query_token") | |
llama_model = cfg.get("llama_model") | |
freeze_imagebind = cfg.get("freeze_imagebind", True) | |
freeze_qformer = cfg.get("freeze_qformer", True) | |
low_resource = cfg.get("low_resource", False) | |
device_8bit = cfg.get("device_8bit", 0) | |
prompt_path = cfg.get("prompt_path", "") | |
prompt_template = cfg.get("prompt_template", "") | |
max_txt_len = cfg.get("max_txt_len", 128) | |
end_sym = cfg.get("end_sym", '\n') | |
with_bind_head = cfg.get("with_bind_head", False) | |
freeze_llm = cfg.get("freeze_llm", True) | |
use_blip_vision = cfg.get("use_blip_vision", False) | |
proj_model = cfg.get("proj_model", "checkpoints/prerained_minigpt4_7b.pth") | |
model = cls( | |
joiner_cfg=joiner_cfg, | |
q_former_model=q_former_model, | |
freeze_imagebind=freeze_imagebind, | |
freeze_qformer=freeze_qformer, | |
num_query_token=num_query_token, | |
llama_model=llama_model, | |
prompt_path=prompt_path, | |
prompt_template=prompt_template, | |
max_txt_len=max_txt_len, | |
end_sym=end_sym, | |
low_resource=low_resource, | |
device_8bit=device_8bit, | |
with_bind_head=with_bind_head, | |
freeze_llm=freeze_llm, | |
use_blip_vision=use_blip_vision, | |
proj_model=proj_model, | |
) | |
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 | |
if ckpt_path: | |
if isinstance(ckpt_path, str): | |
ckpt_path = [ckpt_path] | |
for cur_ckpt_path in ckpt_path: | |
print("Load ImageBind-LLM Checkpoint: {}".format(cur_ckpt_path)) | |
ckpt = torch.load(cur_ckpt_path, map_location="cpu") | |
msg = model.load_state_dict(ckpt['model'], strict=False) | |
return model |