|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig |
|
import gradio as gr |
|
from torch.nn import functional as F |
|
import seaborn |
|
|
|
import matplotlib |
|
import platform |
|
|
|
from transformers.file_utils import ModelOutput |
|
|
|
if platform.system() == "Darwin": |
|
print("MacOS") |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
import io |
|
from PIL import Image |
|
|
|
import matplotlib.font_manager as fm |
|
import util |
|
|
|
|
|
|
|
MODEL_NAME = 'jason9693/SoongsilBERT-base-beep' |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) |
|
config = AutoConfig.from_pretrained(MODEL_NAME) |
|
|
|
MODEL_BUF = { |
|
"name": MODEL_NAME, |
|
"tokenizer": tokenizer, |
|
"model": model, |
|
"config": config |
|
} |
|
|
|
|
|
font_dir = ['./'] |
|
for font in fm.findSystemFonts(font_dir): |
|
print(font) |
|
fm.fontManager.addfont(font) |
|
plt.rcParams["font.family"] = 'NanumGothicCoding' |
|
|
|
|
|
def visualize_attention(sent, attention_matrix, n_words=10): |
|
def draw(data, x, y, ax): |
|
|
|
seaborn.heatmap(data, |
|
xticklabels=x, square=True, yticklabels=y, vmin=0.0, vmax=1.0, |
|
cbar=False, ax=ax) |
|
|
|
|
|
fig = plt.figure(figsize=(16, 8)) |
|
|
|
for i, layer in enumerate(range(1, 12, 2)): |
|
ax = fig.add_subplot(2, 3, i+1) |
|
ax.set_title("Layer {}".format(layer)) |
|
draw(attention_matrix[layer], sent if layer > 6 else [], sent if layer in [1,7] else [], ax=ax) |
|
|
|
fig.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
|
|
def change_model_name(name): |
|
MODEL_BUF["name"] = name |
|
MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name) |
|
MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name) |
|
MODEL_BUF["config"] = AutoConfig.from_pretrained(name) |
|
|
|
|
|
def predict(model_name, text): |
|
if model_name != MODEL_BUF["name"]: |
|
change_model_name(model_name) |
|
|
|
tokenizer = MODEL_BUF["tokenizer"] |
|
model = MODEL_BUF["model"] |
|
config = MODEL_BUF["config"] |
|
|
|
tokenized_text = tokenizer([text], return_tensors='pt') |
|
|
|
input_tokens = tokenizer.convert_ids_to_tokens(tokenized_text.input_ids[0]) |
|
try: |
|
input_tokens = util.bytetokens_to_unicdode(input_tokens) if config.model_type in ['roberta', 'gpt', 'gpt2'] else input_tokens |
|
except KeyError: |
|
input_tokens = input_tokens |
|
|
|
model.eval() |
|
output, attention = model(**tokenized_text, output_attentions=True, return_dict=False) |
|
output = F.softmax(output, dim=-1) |
|
result = {} |
|
|
|
for idx, label in enumerate(output[0].detach().numpy()): |
|
result[config.id2label[idx]] = float(label) |
|
|
|
fig = visualize_attention(input_tokens, attention[0][0].detach().numpy()) |
|
return result, fig |
|
|
|
|
|
if __name__ == '__main__': |
|
text = '읿딴걸 홍볿글 읿랉곭 쌑젩낄고 앉앟있냩' |
|
|
|
model_name_list = [ |
|
'jason9693/SoongsilBERT-base-beep', |
|
"beomi/beep-klue-roberta-base-hate", |
|
"beomi/beep-koelectra-base-v3-discriminator-hate", |
|
"beomi/beep-KcELECTRA-base-hate" |
|
] |
|
|
|
|
|
app = gr.Interface( |
|
fn=predict, |
|
inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label', 'plot'], |
|
examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=🦀 4≠🦀"]], |
|
title="한국어 혐오성 발화 분류기 (Korean Hate Speech Classifier)", |
|
description="Korean Hate Speech Classifier with Several Pretrained LM\nCurrent Supported Model:\n1. SoongsilBERT\n2. KcBERT(+KLUE)\n3. KcELECTRA\n4.KoELECTRA." |
|
) |
|
app.launch(inline=False) |
|
|