Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d | |
from modules.dense_motion import DenseMotionNetwork | |
class OcclusionAwareGenerator(nn.Module): | |
""" | |
Generator that given source image and and keypoints try to transform image according to movement trajectories | |
induced by keypoints. Generator follows Johnson architecture. | |
""" | |
def __init__(self, num_channels, num_kp, block_expansion, max_features, num_down_blocks, | |
num_bottleneck_blocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False): | |
super(OcclusionAwareGenerator, self).__init__() | |
if dense_motion_params is not None: | |
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, num_channels=num_channels, | |
estimate_occlusion_map=estimate_occlusion_map, | |
**dense_motion_params) | |
else: | |
self.dense_motion_network = None | |
self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3)) | |
down_blocks = [] | |
for i in range(num_down_blocks): | |
in_features = min(max_features, block_expansion * (2 ** i)) | |
out_features = min(max_features, block_expansion * (2 ** (i + 1))) | |
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.down_blocks = nn.ModuleList(down_blocks) | |
up_blocks = [] | |
for i in range(num_down_blocks): | |
in_features = min(max_features, block_expansion * (2 ** (num_down_blocks - i))) | |
out_features = min(max_features, block_expansion * (2 ** (num_down_blocks - i - 1))) | |
up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.up_blocks = nn.ModuleList(up_blocks) | |
self.bottleneck = torch.nn.Sequential() | |
in_features = min(max_features, block_expansion * (2 ** num_down_blocks)) | |
for i in range(num_bottleneck_blocks): | |
self.bottleneck.add_module('r' + str(i), ResBlock2d(in_features, kernel_size=(3, 3), padding=(1, 1))) | |
self.final = nn.Conv2d(block_expansion, num_channels, kernel_size=(7, 7), padding=(3, 3)) | |
self.estimate_occlusion_map = estimate_occlusion_map | |
self.num_channels = num_channels | |
def deform_input(self, inp, deformation): | |
_, h_old, w_old, _ = deformation.shape | |
_, _, h, w = inp.shape | |
if h_old != h or w_old != w: | |
deformation = deformation.permute(0, 3, 1, 2) | |
deformation = F.interpolate(deformation, size=(h, w), mode='bilinear') | |
deformation = deformation.permute(0, 2, 3, 1) | |
return F.grid_sample(inp, deformation) | |
def forward(self, source_image, kp_driving, kp_source): | |
# Encoding (downsampling) part | |
out = self.first(source_image) | |
for i in range(len(self.down_blocks)): | |
out = self.down_blocks[i](out) | |
# Transforming feature representation according to deformation and occlusion | |
output_dict = {} | |
if self.dense_motion_network is not None: | |
dense_motion = self.dense_motion_network(source_image=source_image, kp_driving=kp_driving, | |
kp_source=kp_source) | |
output_dict['mask'] = dense_motion['mask'] | |
output_dict['sparse_deformed'] = dense_motion['sparse_deformed'] | |
if 'occlusion_map' in dense_motion: | |
occlusion_map = dense_motion['occlusion_map'] | |
output_dict['occlusion_map'] = occlusion_map | |
else: | |
occlusion_map = None | |
deformation = dense_motion['deformation'] | |
out = self.deform_input(out, deformation) | |
if occlusion_map is not None: | |
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]: | |
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear') | |
out = out * occlusion_map | |
output_dict["deformed"] = self.deform_input(source_image, deformation) | |
# Decoding part | |
out = self.bottleneck(out) | |
for i in range(len(self.up_blocks)): | |
out = self.up_blocks[i](out) | |
out = self.final(out) | |
out = F.sigmoid(out) | |
output_dict["prediction"] = out | |
return output_dict | |