OCR_with_LLMs / app.py
madhavkotecha's picture
Create app.py
acec273 verified
raw
history blame
7.39 kB
from pycparser.ply.yacc import token
from ultralytics import YOLO
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoModelForCausalLM, pipeline, AutoModelForMaskedLM
from PIL import Image
import numpy as np
import pandas as pd
from nltk.translate import bleu_score
from nltk.translate.bleu_score import SmoothingFunction
import torch
yolo_weights_path = "final_wts.pt"
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-handwritten')
trocr_model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-handwritten').to(device)
trocr_model.config.num_beams = 1
yolo_model = YOLO(yolo_weights_path).to('mps')
unmasker_large = pipeline('fill-mask', model='roberta-large', device=device)
roberta_model = AutoModelForMaskedLM.from_pretrained("roberta-large").to(device)
print(f'TrOCR and YOLO Models loaded on {device}')
-------------------------------------------------------
CONFIDENCE_THRESHOLD = 0.72
BLEU_THRESHOLD = 0.6
def inference(image_path, debug=False, return_texts='final'):
def get_cropped_images(image_path):
results = yolo_model(image_path, save=True)
patches = []
ys = []
for box in sorted(results[0].boxes, key=lambda x: x.xywh[0][1]):
image = Image.open(image_path).convert("RGB")
x_center, y_center, w, h = box.xywh[0].cpu().numpy()
x, y = x_center - w / 2, y_center - h / 2
cropped_image = image.crop((x, y, x + w, y + h))
patches.append(cropped_image)
ys.append(y)
bounding_box_path = results[0].save_dir + results[0].path[results[0].path.rindex('/'):-4] + '.jpg'
return patches, ys, bounding_box_path
def get_model_output(images):
pixel_values = processor(images=images, return_tensors="pt").pixel_values.to(device)
output = trocr_model.generate(pixel_values, return_dict_in_generate=True, output_logits=True, max_new_tokens=30)
generated_texts = processor.batch_decode(output.sequences, skip_special_tokens=True)
generated_tokens = [processor.tokenizer.convert_ids_to_tokens(seq) for seq in output.sequences]
stacked_logits = torch.stack(output.logits, dim=1)
return generated_texts, stacked_logits, generated_tokens
def get_scores(logits):
scores = logits.softmax(-1).max(-1).values.mean(-1)
return scores
def post_process_texts(generated_texts):
for i in range(len(generated_texts)):
if len(generated_texts[i]) > 2 and generated_texts[i][:2] == '# ':
generated_texts[i] = generated_texts[i][2:]
if len(generated_texts[i]) > 2 and generated_texts[i][-2:] == ' #':
generated_texts[i] = generated_texts[i][:-2]
return generated_texts
def get_qualified_texts(generated_texts, scores, y, logits, tokens):
qualified_texts = []
for text, score, y_i, logits_i, tokens_i in zip(generated_texts, scores, y, logits, tokens):
if score > CONFIDENCE_THRESHOLD:
qualified_texts.append({
'text': text,
'score': score,
'y': y_i,
'logits': logits_i,
'tokens': tokens_i
})
return qualified_texts
def get_adjacent_bleu_scores(qualified_texts):
def get_bleu_score(hypothesis, references):
weights = [0.5, 0.5]
smoothing = SmoothingFunction()
return bleu_score.sentence_bleu(references, hypothesis, weights=weights,
smoothing_function=smoothing.method1)
for i in range(len(qualified_texts)):
hyp = qualified_texts[i]['text'].split()
bleu = 0
if i < len(qualified_texts) - 1:
ref = qualified_texts[i + 1]['text'].split()
bleu = get_bleu_score(hyp, [ref])
qualified_texts[i]['bleu'] = bleu
return qualified_texts
def remove_overlapping_texts(qualified_texts):
final_texts = []
new = True
for i in range(len(qualified_texts)):
if new:
final_texts.append(qualified_texts[i])
else:
if final_texts[-1]['score'] < qualified_texts[i]['score']:
final_texts[-1] = qualified_texts[i]
new = qualified_texts[i]['bleu'] < BLEU_THRESHOLD
return final_texts
cropped_images, y, bounding_box_path = get_cropped_images(image_path)
if debug:
print('Number of cropped images:', len(cropped_images))
generated_texts, logits, gen_tokens = get_model_output(cropped_images)
normalised_scores = get_scores(logits)
if return_texts == 'generated':
return pd.DataFrame({
'text': generated_texts,
'score': normalised_scores,
'y': y,
})
generated_texts = post_process_texts(generated_texts)
if return_texts == 'post_processed':
return pd.DataFrame({
'text': generated_texts,
'score': normalised_scores,
'y': y
})
qualified_texts = get_qualified_texts(generated_texts, normalised_scores, y, logits, gen_tokens)
if return_texts == 'qualified':
return pd.DataFrame(qualified_texts)
qualified_texts = get_adjacent_bleu_scores(qualified_texts)
if return_texts == 'qualified_with_bleu':
return pd.DataFrame(qualified_texts)
final_texts = remove_overlapping_texts(qualified_texts)
final_texts_df = pd.DataFrame(final_texts, columns=['text', 'score', 'y'])
final_tokens = [text['tokens'] for text in final_texts]
final_logits = [text['logits'] for text in final_texts]
if return_texts == 'final':
return final_texts_df
return final_texts_df, bounding_box_path, final_tokens, final_logits, generated_texts
image_path = "raw_dataset/g06-037h.png"
df, bounding_path, tokens, logits, gen_texts = inference(image_path, debug=False, return_texts='final_v2')
----------------------------------------------------------------
def get_new_logits(tokens):
inputs = tokens.reshape(1, -1)
# Get the logits from the model
with torch.no_grad():
outputs = roberta_model(input_ids=inputs, attention_mask=torch.ones(inputs.shape).to(device))
logits = outputs.logits
logits_flattened = logits.reshape(-1, slogits.shape[-1])
print(processor.batch_decode([logits_flattened.argmax(-1)], skip_special_tokens=True))
return logits.reshape(tokens.shape + (logits.shape[-1],))
slogits = torch.stack([logit for logit in logits], dim=0)
tokens = slogits.argmax(-1)
confidence = slogits.softmax(-1).max(-1).values
indices = torch.where(confidence < 0.5)
# put 50264(mask) when confidence < 0.5
for i, j in zip(indices[0], indices[1]):
if i != 6:
continue
tokens[i, j] = torch.tensor(50264)
new_logits = get_new_logits(tokens)
----------------------------------------------------------------
for i, j in zip(indices[0], indices[1]):
slogits[i, j] = slogits[i, j] * 0.1 + new_logits[i, j] * 0.5
logits_flattened = slogits.reshape(-1, slogits.shape[-1])
processor.batch_decode([logits_flattened.argmax(-1)], skip_special_tokens=True)