Spaces:
Sleeping
Sleeping
madhavkotecha
commited on
Commit
•
ce62bb3
1
Parent(s):
89435c1
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,6 @@ from tqdm import tqdm
|
|
12 |
import gradio as gr
|
13 |
import matplotlib.pyplot as plt
|
14 |
from sklearn import metrics
|
15 |
-
from sklearn.model_selection import KFold
|
16 |
|
17 |
nltk.download('stopwords')
|
18 |
nltk.download('punkt_tab')
|
@@ -22,12 +21,19 @@ PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'
|
|
22 |
Features_count = 6
|
23 |
SEED = 42
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
class NEI:
|
26 |
def __init__(self):
|
27 |
self.model = None
|
28 |
self.scaler = StandardScaler()
|
29 |
self.vectorizer = DictVectorizer(sparse=True)
|
30 |
-
self.tagset = ['Name[
|
31 |
|
32 |
def load_dataset(self, file):
|
33 |
sentences = []
|
@@ -48,51 +54,6 @@ class NEI:
|
|
48 |
sentences.append(sentence)
|
49 |
return sentences
|
50 |
|
51 |
-
def sent2features(self, sentence):
|
52 |
-
return [self.word2features(sentence, i) for i in range(len(sentence))]
|
53 |
-
|
54 |
-
def sent2labels(self, sentence):
|
55 |
-
return [label for _, _, label in sentence]
|
56 |
-
|
57 |
-
def word2features(self, sentence, i):
|
58 |
-
word = sentence[i][0]
|
59 |
-
pos_tag = sentence[i][1]
|
60 |
-
features = {
|
61 |
-
'word': word,
|
62 |
-
'pos_tag': pos_tag,
|
63 |
-
'word.isupper': int(word.isupper()),
|
64 |
-
'word.islower': int(word.islower()),
|
65 |
-
'word.istitle': int(word.istitle()),
|
66 |
-
'word.isdigit': int(word.isdigit()),
|
67 |
-
'word.prefix2': word[:2],
|
68 |
-
'word.prefix3': word[:3],
|
69 |
-
'word.suffix2': word[-2:],
|
70 |
-
'word.suffix3': word[-3:],
|
71 |
-
}
|
72 |
-
# Add context features
|
73 |
-
if i > 0:
|
74 |
-
prv_word = sentence[i - 1][0]
|
75 |
-
prv_pos_tag = sentence[i - 1][1]
|
76 |
-
features.update({
|
77 |
-
'-1:word': prv_word,
|
78 |
-
'-1:pos_tag': prv_pos_tag,
|
79 |
-
'-1:word.isupper': int(prv_word.isupper()),
|
80 |
-
'-1:word.istitle': int(prv_word.istitle()),
|
81 |
-
})
|
82 |
-
else:
|
83 |
-
features['BOS'] = True
|
84 |
-
if i < len(sentence) - 1:
|
85 |
-
next_word = sentence[i + 1][0]
|
86 |
-
next_pos_tag = sentence[i + 1][1]
|
87 |
-
features.update({
|
88 |
-
'+1:word': next_word,
|
89 |
-
'+1:pos_tag': next_pos_tag,
|
90 |
-
'+1:word.isupper': int(next_word.isupper()),
|
91 |
-
'+1:word.istitle': int(next_word.istitle()),
|
92 |
-
})
|
93 |
-
else:
|
94 |
-
features['EOS'] = True
|
95 |
-
return features
|
96 |
|
97 |
def performance(self, y_true, y_pred):
|
98 |
print(classification_report(y_true, y_pred))
|
@@ -106,32 +67,53 @@ class NEI:
|
|
106 |
def confusion_matrix(self,y_true,y_pred):
|
107 |
matrix = metrics.confusion_matrix(y_true,y_pred)
|
108 |
normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
111 |
plt.xticks(np.arange(len(self.tagset)), self.tagset)
|
112 |
plt.yticks(np.arange(len(self.tagset)), self.tagset)
|
113 |
for i in range(normalized_matrix.shape[0]):
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
|
117 |
plt.colorbar()
|
118 |
plt.savefig('Confusion_Matrix.png')
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
def create_data(self, data):
|
128 |
words, features, labels = [], [], []
|
129 |
for d in tqdm(data):
|
130 |
tags = d["ner_tags"]
|
131 |
-
|
132 |
tokens = d["tokens"]
|
133 |
for i, token in enumerate(tokens):
|
134 |
-
|
|
|
|
|
135 |
y = 1 if tags[i] > 0 else 0
|
136 |
features.append(x)
|
137 |
labels.append(y)
|
@@ -150,18 +132,31 @@ class NEI:
|
|
150 |
X_val = self.scaler.transform(X_val)
|
151 |
y_pred_val = self.model.predict(X_val)
|
152 |
# print(classification_report(y_true=y_val, y_pred=y_pred_val))
|
|
|
153 |
self.confusion_matrix(y_val,y_pred_val)
|
154 |
self.performance(y_val,y_pred_val)
|
155 |
|
156 |
def infer(self, sentence):
|
157 |
tokens = word_tokenize(sentence)
|
158 |
-
features = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
features = np.array(features, dtype=np.float32)
|
160 |
scaled_features = self.scaler.transform(features)
|
161 |
y_pred = self.model.predict(scaled_features)
|
162 |
return list(zip(tokens, y_pred))
|
163 |
|
164 |
-
|
165 |
data = load_dataset("conll2003", trust_remote_code=True)
|
166 |
nei_model = NEI()
|
167 |
|
@@ -173,7 +168,7 @@ nei_model.evaluate(data["validation"])
|
|
173 |
|
174 |
def annotate(text):
|
175 |
predictions = nei_model.infer(text)
|
176 |
-
annotated_output = " ".join([f"{word}_{int(label)}
|
177 |
return annotated_output
|
178 |
|
179 |
interface = gr.Interface(fn = annotate,
|
@@ -186,6 +181,6 @@ interface = gr.Interface(fn = annotate,
|
|
186 |
placeholder="Tagged sentence appears here...",
|
187 |
),
|
188 |
title = "Named Entity Recognition",
|
189 |
-
description = "CS626 Assignment
|
190 |
theme=gr.themes.Soft())
|
191 |
interface.launch()
|
|
|
12 |
import gradio as gr
|
13 |
import matplotlib.pyplot as plt
|
14 |
from sklearn import metrics
|
|
|
15 |
|
16 |
nltk.download('stopwords')
|
17 |
nltk.download('punkt_tab')
|
|
|
21 |
Features_count = 6
|
22 |
SEED = 42
|
23 |
|
24 |
+
SW = set(nltk.corpus.stopwords.words("english"))
|
25 |
+
PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"'])
|
26 |
+
connectors = set(["of", "in", "and", "for", "to", "with", "at", "from"])
|
27 |
+
start_words = set(["the", "a", "an", "this", "that", "these", "those", "my", "your", "his", "her", "its", "our", "their", "few", "many", "several", "all", "most", "some", "any", "every", "each", "either", "neither", "both", "another", "other", "more", "less", "fewer", "little", "much", "great", "good", "bad", "first", "second", "third", "last", "next", "previous"])
|
28 |
+
Features_count = 6
|
29 |
+
SEED = 42
|
30 |
+
|
31 |
class NEI:
|
32 |
def __init__(self):
|
33 |
self.model = None
|
34 |
self.scaler = StandardScaler()
|
35 |
self.vectorizer = DictVectorizer(sparse=True)
|
36 |
+
self.tagset = ['No-Name[0]', 'Name[1]']
|
37 |
|
38 |
def load_dataset(self, file):
|
39 |
sentences = []
|
|
|
54 |
sentences.append(sentence)
|
55 |
return sentences
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def performance(self, y_true, y_pred):
|
59 |
print(classification_report(y_true, y_pred))
|
|
|
67 |
def confusion_matrix(self,y_true,y_pred):
|
68 |
matrix = metrics.confusion_matrix(y_true,y_pred)
|
69 |
normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)
|
70 |
+
|
71 |
+
# disp = metrics.ConfusionMatrixDisplay(confusion_matrix=normalized_matrix, display_labels=self.tagset)
|
72 |
+
fig, ax = plt.subplots()
|
73 |
+
# disp.plot(cmap=plt.cm.GnBu, ax=ax, colorbar=True)
|
74 |
+
ax.xaxis.set_ticks_position('top')
|
75 |
+
ax.xaxis.set_label_position('top')
|
76 |
plt.xticks(np.arange(len(self.tagset)), self.tagset)
|
77 |
plt.yticks(np.arange(len(self.tagset)), self.tagset)
|
78 |
for i in range(normalized_matrix.shape[0]):
|
79 |
+
for j in range(normalized_matrix.shape[1]):
|
80 |
+
text = f"{normalized_matrix[i, j]:.2f}"
|
81 |
+
ax.text(j, i, text, ha="center", va="center", color="black")
|
82 |
+
plt.title("Normalized Confusion Matrix")
|
83 |
+
plt.xlabel("Predicted Label")
|
84 |
+
plt.ylabel("True Label")
|
85 |
plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
|
86 |
plt.colorbar()
|
87 |
plt.savefig('Confusion_Matrix.png')
|
88 |
+
# plt.xticks(np.arange(len(self.tagset)), self.tagset)
|
89 |
+
# plt.yticks(np.arange(len(self.tagset)), self.tagset)
|
90 |
+
# for i in range(normalized_matrix.shape[0]):
|
91 |
+
# for j in range(normalized_matrix.shape[1]):
|
92 |
+
# plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center")
|
93 |
+
# plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
|
94 |
+
# plt.colorbar()
|
95 |
+
# plt.savefig('Confusion_Matrix.png')
|
96 |
+
|
97 |
+
def vectorize(self, w, scaled_position, prev_tag=0, next_tag=0, prev_token=None):
|
98 |
+
is_titlecase = 1 if w[0].isupper() else 0
|
99 |
+
is_allcaps = 1 if w.isupper() else 0
|
100 |
+
is_sw = 1 if w.lower() in SW else 0
|
101 |
+
is_punct = 1 if w in PUNCT else 0
|
102 |
+
is_surrounded_by_entities = 1 if (prev_tag > 0 and next_tag > 0) else 0
|
103 |
+
is_connector = 1 if (w.lower() in connectors) and (prev_tag > 0 and next_tag > 0) else 0
|
104 |
+
# is_start_of_sentence = 1 if (scaled_position == 0 or prev_token in [".", "!", "?"]) and w.lower() not in start_words else 0
|
105 |
+
# is_start_of_sentence = 1 if scaled_position == 0 else 0
|
106 |
+
return [is_titlecase, is_allcaps, len(w), is_sw, is_punct, is_connector, scaled_position]
|
107 |
|
108 |
def create_data(self, data):
|
109 |
words, features, labels = [], [], []
|
110 |
for d in tqdm(data):
|
111 |
tags = d["ner_tags"]
|
|
|
112 |
tokens = d["tokens"]
|
113 |
for i, token in enumerate(tokens):
|
114 |
+
prev_tag = tags[i - 1] if i > 0 else 0
|
115 |
+
next_tag = tags[i + 1] if i < len(tokens) - 1 else 0
|
116 |
+
x = self.vectorize(token, scaled_position=(i / len(tokens)), prev_tag=prev_tag, next_tag=next_tag, prev_token=tokens[i-1] if i > 0 else None)
|
117 |
y = 1 if tags[i] > 0 else 0
|
118 |
features.append(x)
|
119 |
labels.append(y)
|
|
|
132 |
X_val = self.scaler.transform(X_val)
|
133 |
y_pred_val = self.model.predict(X_val)
|
134 |
# print(classification_report(y_true=y_val, y_pred=y_pred_val))
|
135 |
+
print(metrics.confusion_matrix(y_val,y_pred_val))
|
136 |
self.confusion_matrix(y_val,y_pred_val)
|
137 |
self.performance(y_val,y_pred_val)
|
138 |
|
139 |
def infer(self, sentence):
|
140 |
tokens = word_tokenize(sentence)
|
141 |
+
features = []
|
142 |
+
|
143 |
+
raw_features = [self.vectorize(token, i / len(tokens), prev_token=tokens[i-1] if i > 0 else None) for i, token in enumerate(tokens)]
|
144 |
+
raw_features = np.array(raw_features, dtype=np.float32)
|
145 |
+
scaled_features = self.scaler.transform(raw_features)
|
146 |
+
y_pred = self.model.predict(scaled_features)
|
147 |
+
|
148 |
+
for i, token in enumerate(tokens):
|
149 |
+
prev_tag = y_pred[i - 1] if i > 0 else 0
|
150 |
+
next_tag = y_pred[i + 1] if i < len(tokens) - 1 else 0
|
151 |
+
|
152 |
+
feature_with_context = self.vectorize(token, i / len(tokens), prev_tag, next_tag, prev_token=tokens[i-1] if i > 0 else None)
|
153 |
+
features.append(feature_with_context)
|
154 |
+
|
155 |
features = np.array(features, dtype=np.float32)
|
156 |
scaled_features = self.scaler.transform(features)
|
157 |
y_pred = self.model.predict(scaled_features)
|
158 |
return list(zip(tokens, y_pred))
|
159 |
|
|
|
160 |
data = load_dataset("conll2003", trust_remote_code=True)
|
161 |
nei_model = NEI()
|
162 |
|
|
|
168 |
|
169 |
def annotate(text):
|
170 |
predictions = nei_model.infer(text)
|
171 |
+
annotated_output = " ".join([f"{word}_{int(label)} " for word, label in predictions])
|
172 |
return annotated_output
|
173 |
|
174 |
interface = gr.Interface(fn = annotate,
|
|
|
181 |
placeholder="Tagged sentence appears here...",
|
182 |
),
|
183 |
title = "Named Entity Recognition",
|
184 |
+
description = "CS626 Assignment 3 (Autumn 2024)",
|
185 |
theme=gr.themes.Soft())
|
186 |
interface.launch()
|