madhavkotecha commited on
Commit
8fa594d
·
verified ·
1 Parent(s): fc16b46

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +233 -0
app.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nltk
2
+ import sklearn_crfsuite
3
+ from sklearn_crfsuite import metrics
4
+ from nltk.stem import LancasterStemmer
5
+ import numpy as np
6
+ from sklearn.metrics import confusion_matrix
7
+ import seaborn as sns
8
+ import matplotlib.pyplot as plt
9
+ import re
10
+ import gradio as gr
11
+ lancaster = LancasterStemmer()
12
+
13
+
14
+
15
+ class CRF_POS_Tagger:
16
+ def __init__(self):
17
+ self.corpus = nltk.corpus.brown.tagged_sents(tagset='universal')
18
+ self.corpus = [[(word.lower(), tag) for word, tag in sentence] for sentence in self.corpus]
19
+ self.actual_tag = []
20
+ self.predicted_tag = []
21
+ self.prefixes = [
22
+ "a", "anti", "auto", "bi", "co", "dis", "en", "em", "ex", "in", "im",
23
+ "inter", "mis", "non", "over", "pre", "re", "sub", "trans", "un", "under"
24
+ ]
25
+
26
+ self.suffixes = [
27
+ "able", "ible", "al", "ance", "ence", "dom", "er", "or", "ful", "hood",
28
+ "ic", "ing", "ion", "tion", "ity", "ty", "ive", "less", "ly", "ment",
29
+ "ness", "ous", "ship", "y", "es", "s"
30
+ ]
31
+
32
+ self.prefix_pattern = f"^({'|'.join(self.prefixes)})"
33
+ self.suffix_pattern = f"({'|'.join(self.suffixes)})$"
34
+
35
+ self.X = [[self.word_features(sentence, i) for i in range(len(sentence))] for sentence in self.corpus]
36
+ self.y = [[postag for _, postag in sentence] for sentence in self.corpus]
37
+
38
+ self.split = int(0.8 * len(self.X))
39
+ self.X_train = self.X[:self.split]
40
+ self.y_train = self.y[:self.split]
41
+ self.X_test = self.X[self.split:]
42
+ self.y_test = self.y[self.split:]
43
+ self.crf_model = sklearn_crfsuite.CRF(algorithm='lbfgs', c1=0.1, c2=0.1, max_iterations=100, all_possible_transitions=True)
44
+ self.train()
45
+
46
+ def word_splitter(self, word):
47
+ prefix = ""
48
+ stem = word
49
+ suffix = ""
50
+
51
+ prefix_match = re.match(self.prefix_pattern, word)
52
+ if prefix_match:
53
+ prefix = prefix_match.group(1)
54
+ stem = word[len(prefix):]
55
+
56
+ suffix_match = re.search(self.suffix_pattern, stem)
57
+ if suffix_match:
58
+ suffix = suffix_match.group(1)
59
+ stem = stem[: -len(suffix)]
60
+
61
+ return prefix, stem, suffix
62
+
63
+ # Define a function to extract features for each word in a sentence
64
+ def word_features(self, sentence, i):
65
+ word = sentence[i][0]
66
+ prefix, stem, suffix = self.word_splitter(word)
67
+ features = {
68
+ 'word': word,
69
+ 'prefix': prefix,
70
+ # 'stem': stem,
71
+ 'stem': lancaster.stem(word),
72
+ 'suffix': suffix,
73
+ 'position': i,
74
+ 'is_first': i == 0, #if the word is a first word
75
+ 'is_last': i == len(sentence) - 1, #if the word is a last word
76
+ # 'is_capitalized': word[0].upper() == word[0],
77
+ 'is_all_caps': word.isupper(), #word is in uppercase
78
+ 'is_all_lower': word.islower(), #word is in lowercase
79
+
80
+ 'prefix-1': word[0],
81
+ 'prefix-2': word[:2],
82
+ 'prefix-3': word[:3],
83
+ 'suffix-1': word[-1],
84
+ 'suffix-2': word[-2:],
85
+ 'suffix-3': word[-3:],
86
+
87
+ 'prefix-un': word[:2] == 'un', #if word starts with un
88
+ 'prefix-re': word[:2] == 're', #if word starts with re
89
+ 'prefix-over': word[:4] == 'over', #if word starts with over
90
+ 'prefix-dis': word[:4] == 'dis', #if word starts with dis
91
+ 'prefix-mis': word[:4] == 'mis', #if word starts with mis
92
+ 'prefix-pre': word[:4] == 'pre', #if word starts with pre
93
+ 'prefix-non': word[:4] == 'non', #if word starts with non
94
+ 'prefix-de': word[:3] == 'de', #if word starts with de
95
+ 'prefix-in': word[:3] == 'in', #if word starts with in
96
+ 'prefix-en': word[:3] == 'en', #if word starts with en
97
+
98
+ 'suffix-ed': word[-2:] == 'ed', #if word ends with ed
99
+ 'suffix-ing': word[-3:] == 'ing', #if word ends with ing
100
+ 'suffix-es': word[-2:] == 'es', #if word ends with es
101
+ 'suffix-ly': word[-2:] == 'ly', #if word ends with ly
102
+ 'suffix-ment': word[-4:] == 'ment', #if word ends with ment
103
+ 'suffix-er': word[-2:] == 'er', #if word ends with er
104
+ 'suffix-ive': word[-3:] == 'ive',
105
+ 'suffix-ous': word[-3:] == 'ous',
106
+ 'suffix-ness': word[-4:] == 'ness',
107
+ 'ends_with_s': word[-1] == 's',
108
+ 'ends_with_es': word[-2:] == 'es',
109
+
110
+ 'has_hyphen': '-' in word, #if word has hypen
111
+ 'is_numeric': word.isdigit(), #if word is in numeric
112
+ 'capitals_inside': word[1:].lower() != word[1:],
113
+ 'is_title_case': word.istitle(), #if first letter is in uppercase
114
+
115
+ }
116
+
117
+ if i > 0:
118
+ # prev_word, prev_postag = sentence[i-1]
119
+ prev_word = sentence[i-1][0]
120
+ prev_prefix, prev_stem, prev_suffix = self.word_splitter(prev_word)
121
+
122
+ features.update({
123
+ 'prev_word': prev_word,
124
+ # 'prev_postag': prev_postag,
125
+ 'prev_prefix': prev_prefix,
126
+ 'prev_stem': lancaster.stem(prev_word),
127
+ 'prev_suffix': prev_suffix,
128
+ 'prev:is_all_caps': prev_word.isupper(),
129
+ 'prev:is_all_lower': prev_word.islower(),
130
+ 'prev:is_numeric': prev_word.isdigit(),
131
+ 'prev:is_title_case': prev_word.istitle(),
132
+ })
133
+
134
+ if i < len(sentence)-1:
135
+ next_word = sentence[i-1][0]
136
+ next_prefix, next_stem, next_suffix = self.word_splitter(next_word)
137
+ features.update({
138
+ 'next_word': next_word,
139
+ 'next_prefix': next_prefix,
140
+ 'next_stem': lancaster.stem(next_word),
141
+ 'next_suffix': next_suffix,
142
+ 'next:is_all_caps': next_word.isupper(),
143
+ 'next:is_all_lower': next_word.islower(),
144
+ 'next:is_numeric': next_word.isdigit(),
145
+ 'next:is_title_case': next_word.istitle(),
146
+ })
147
+
148
+ return features
149
+
150
+ def train(self):
151
+ self.crf_model.fit(self.X_train, self.y_train)
152
+
153
+ def predict(self, X_test):
154
+ return self.crf_model.predict(X_test)
155
+
156
+ def accuracy(self, test_data):
157
+ X_test, y_test = zip(*test_data)
158
+ y_pred = self.predict(X_test)
159
+ self.actual_tag.extend([item for sublist in y_test for item in sublist])
160
+ self.predicted_tag.extend([item for sublist in y_pred for item in sublist])
161
+ return metrics.flat_accuracy_score(y_test, y_pred)
162
+
163
+ def cross_validation(self, data):
164
+ accuracies = []
165
+ for i in range(5):
166
+ n1 = int(i / 5.0 * len(data))
167
+ n2 = int((i + 1) / 5.0 * len(data))
168
+ test_data = data[n1:n2]
169
+ train_data = data[:n1] + data[n2:]
170
+ self.train(train_data)
171
+ acc = self.accuracy(test_data)
172
+ accuracies.append(acc)
173
+ return accuracies, sum(accuracies) / 5.0
174
+
175
+ def con_matrix(self):
176
+ self.labels = np.unique(self.actual_tag)
177
+ conf_matrix = confusion_matrix(self.actual_tag, self.predicted_tag, labels=self.labels)
178
+
179
+ plt.figure(figsize=(10, 7))
180
+ sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=self.labels, yticklabels=self.labels)
181
+ plt.xlabel('Predicted Tags')
182
+ plt.ylabel('Actual Tags')
183
+ plt.title('Confusion Matrix Heatmap')
184
+ plt.savefig("Confusion_matrix.png")
185
+ plt.show()
186
+
187
+ return conf_matrix
188
+
189
+ def per_pos_accuracy(self, conf_matrix):
190
+ print("Per Tag Precision, Recall, and F-Score:")
191
+ per_tag_metrics = {}
192
+
193
+ for i, tag in enumerate(self.labels):
194
+ true_positives = conf_matrix[i, i]
195
+ false_positives = np.sum(conf_matrix[:, i]) - true_positives
196
+ false_negatives = np.sum(conf_matrix[i, :]) - true_positives
197
+
198
+ precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
199
+ recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
200
+ f1_score = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
201
+ beta_0_5 = 0.5
202
+ beta_2 = 2.0
203
+
204
+ f0_5_score = (1 + beta_0_5**2) * (precision * recall) / ((beta_0_5**2 * precision) + recall) if (precision + recall) > 0 else 0
205
+ f2_score = (1 + beta_2**2) * (precision * recall) / ((beta_2**2 * precision) + recall) if (precision + recall) > 0 else 0
206
+
207
+ per_tag_metrics[tag] = {
208
+ 'Precision': precision,
209
+ 'Recall': recall,
210
+ 'f1-Score': f1_score,
211
+ 'f05-Score': f0_5_score,
212
+ 'f2-Score': f2_score
213
+ }
214
+
215
+ print(f"{tag}: Precision = {precision:.2f}, Recall = {recall:.2f}, f1-Score = {f1_score:.2f}, "
216
+ f"f05-Score = {f0_5_score:.2f}, f2-Score = {f2_score:.2f}")
217
+
218
+ def tagging(self, input):
219
+ sentence = (re.sub(r'(\S)([.,;:!?])', r'\1 \2', input.strip())).split()
220
+ sentence_list = [[word] for word in sentence]
221
+ features = [self.word_features(sentence_list, i) for i in range(len(sentence_list))]
222
+
223
+ predicted_tags = self.crf_model.predict([features])
224
+ output = "".join(f"{sentence[i]}[{predicted_tags[0][i]}] " for i in range(len(sentence)))
225
+ return output
226
+
227
+ tagger = CRF_POS_Tagger()
228
+ interface = gr.Interface(fn = tagger.tagging,
229
+ inputs = "text",
230
+ outputs = "text",
231
+ title = "CRF POS Tagger",
232
+ description = "CS626 Assignment 1b by 24M0797, 24M0798, 24M0815, 24M0833")
233
+ interface.launch(inline = False)