Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
-
|
4 |
-
import
|
5 |
from unsloth import FastModel
|
|
|
6 |
|
7 |
# Set environment for Hugging Face Spaces
|
8 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
@@ -19,49 +20,50 @@ model, tokenizer = FastModel.from_pretrained(
|
|
19 |
full_finetuning=False
|
20 |
)
|
21 |
|
22 |
-
#
|
|
|
|
|
|
|
|
|
23 |
def generate_text(user_input):
|
24 |
-
# Prepare the input as per the model's expected format
|
25 |
messages = [{
|
26 |
"role": "user",
|
27 |
-
"content": [{"type"
|
28 |
}]
|
29 |
-
|
30 |
-
text = tokenizer.apply_chat_template(
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
)
|
34 |
-
|
35 |
-
# Generate output with model
|
36 |
-
with torch.no_grad():
|
37 |
-
output = model.generate(
|
38 |
-
**tokenizer([text], return_tensors="pt").to("cuda"),
|
39 |
-
max_new_tokens=512, # Adjust if you need more tokens
|
40 |
-
temperature=1.0,
|
41 |
-
top_p=0.95,
|
42 |
-
top_k=64,
|
43 |
-
streamer=None # You can set a streamer if needed
|
44 |
-
)
|
45 |
-
|
46 |
-
# Decode the model output and return the result
|
47 |
-
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
return decoded_output[index + len("model"):].strip()
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
# Build the Gradio interface
|
57 |
iface = gr.Interface(
|
58 |
-
fn=generate_text,
|
59 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
60 |
-
outputs=gr.Textbox(lines=
|
61 |
-
title="Gemma-3 Model",
|
62 |
-
description="This is a simple interface to interact with the Gemma-3 model.
|
|
|
63 |
)
|
64 |
|
65 |
# Launch the app
|
66 |
if __name__ == "__main__":
|
67 |
-
iface.launch(share=True)
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import threading
|
4 |
+
from transformers import AutoTokenizer, TextIteratorStreamer
|
5 |
from unsloth import FastModel
|
6 |
+
import gradio as gr
|
7 |
|
8 |
# Set environment for Hugging Face Spaces
|
9 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
|
|
20 |
full_finetuning=False
|
21 |
)
|
22 |
|
23 |
+
# Optional: Compile model for speed boost if using PyTorch 2.x
|
24 |
+
if torch.__version__.startswith("2"):
|
25 |
+
model = torch.compile(model)
|
26 |
+
|
27 |
+
# Function to generate text with streaming
|
28 |
def generate_text(user_input):
|
|
|
29 |
messages = [{
|
30 |
"role": "user",
|
31 |
+
"content": [{"type": "text", "text": user_input}]
|
32 |
}]
|
33 |
+
|
34 |
+
text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
35 |
+
inputs = tokenizer([text], return_tensors="pt").to("cuda")
|
36 |
+
|
37 |
+
# Set up streaming
|
38 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
39 |
+
|
40 |
+
generation_kwargs = dict(
|
41 |
+
**inputs,
|
42 |
+
max_new_tokens=256, # Adjust based on desired response length
|
43 |
+
temperature=1.0,
|
44 |
+
top_p=0.95,
|
45 |
+
top_k=64,
|
46 |
+
streamer=streamer
|
47 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
50 |
+
thread.start()
|
|
|
51 |
|
52 |
+
output = ""
|
53 |
+
for new_text in streamer:
|
54 |
+
output += new_text
|
55 |
+
yield output
|
56 |
|
57 |
+
# Build the Gradio interface with streaming enabled
|
58 |
iface = gr.Interface(
|
59 |
+
fn=generate_text,
|
60 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
61 |
+
outputs=gr.Textbox(lines=10, placeholder="Generated text will appear here..."),
|
62 |
+
title="Gemma-3 Model (Streaming)",
|
63 |
+
description="This is a simple interface to interact with the Gemma-3 model. Now streams output as it's generated.",
|
64 |
+
live=True # Enables real-time response updates
|
65 |
)
|
66 |
|
67 |
# Launch the app
|
68 |
if __name__ == "__main__":
|
69 |
+
iface.launch(share=True)
|