Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,55 +1,48 @@
|
|
| 1 |
import torch
|
| 2 |
-
from transformers import AutoModelForCausalLM,
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
model = AutoModelForCausalLM.from_pretrained("adarsh3601/my_gemma3_pt", device_map="auto")
|
| 9 |
-
processor = AutoProcessor.from_pretrained("adarsh3601/my_gemma3_pt")
|
| 10 |
|
| 11 |
def chat(user_input, history):
|
| 12 |
-
# Format history as messages
|
| 13 |
messages = []
|
| 14 |
-
for
|
| 15 |
messages.append({"role": "user", "content": user_msg})
|
| 16 |
messages.append({"role": "assistant", "content": bot_msg})
|
| 17 |
messages.append({"role": "user", "content": user_input})
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
# Fallback if prompt fails
|
| 27 |
-
if not prompt:
|
| 28 |
-
prompt = "<bos>"
|
| 29 |
-
for i, msg in enumerate(messages):
|
| 30 |
-
role = "model" if msg["role"] == "assistant" else msg["role"]
|
| 31 |
-
prompt += f"<start_of_turn>{role}\n{msg['content'].strip()}<end_of_turn>\n"
|
| 32 |
-
prompt += "<start_of_turn>model\n"
|
| 33 |
-
|
| 34 |
-
print(f"[DEBUG] Prompt:\n{prompt}")
|
| 35 |
|
| 36 |
-
inputs =
|
| 37 |
|
| 38 |
outputs = model.generate(
|
| 39 |
**inputs,
|
| 40 |
-
max_new_tokens=
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
if "<start_of_turn>
|
| 50 |
-
response =
|
|
|
|
|
|
|
| 51 |
|
| 52 |
return response
|
| 53 |
|
| 54 |
-
|
| 55 |
-
iface = gr.ChatInterface(fn=chat, title="Gemma-3 Chat").launch(share=True)
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
+
# Load model and tokenizer using Unsloth-style
|
| 6 |
+
model_name = "adarsh3601/my_gemma3_pt"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
| 9 |
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def chat(user_input, history):
|
|
|
|
| 13 |
messages = []
|
| 14 |
+
for user_msg, bot_msg in history:
|
| 15 |
messages.append({"role": "user", "content": user_msg})
|
| 16 |
messages.append({"role": "assistant", "content": bot_msg})
|
| 17 |
messages.append({"role": "user", "content": user_input})
|
| 18 |
|
| 19 |
+
# Apply chat template
|
| 20 |
+
prompt = tokenizer.apply_chat_template(
|
| 21 |
+
messages,
|
| 22 |
+
add_generation_prompt=True,
|
| 23 |
+
tokenize=False
|
| 24 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 27 |
|
| 28 |
outputs = model.generate(
|
| 29 |
**inputs,
|
| 30 |
+
max_new_tokens=1024,
|
| 31 |
+
temperature=1.0,
|
| 32 |
+
top_p=0.95,
|
| 33 |
+
top_k=64,
|
| 34 |
+
do_sample=True,
|
| 35 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 36 |
+
eos_token_id=tokenizer.eos_token_id
|
| 37 |
)
|
| 38 |
|
| 39 |
+
# Decode and extract just the last assistant message
|
| 40 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 41 |
+
if "<start_of_turn>assistant" in decoded:
|
| 42 |
+
response = decoded.split("<start_of_turn>assistant")[-1].strip()
|
| 43 |
+
else:
|
| 44 |
+
response = decoded
|
| 45 |
|
| 46 |
return response
|
| 47 |
|
| 48 |
+
gr.ChatInterface(fn=chat, title="Chat with Gemma-3").launch(share=True)
|
|
|