made1570 commited on
Commit
49830c8
·
verified ·
1 Parent(s): 9fdf9bf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -1,14 +1,12 @@
1
  import gradio as gr
2
- from safetensors import safe_open
3
- from transformers import AutoTokenizer
4
  import torch
5
 
6
- # Load the tokenizer from the Hugging Face Hub (This will fetch the tokenizer)
7
  tokenizer = AutoTokenizer.from_pretrained("adarsh3601/my_gemma3_pt")
8
 
9
- # Load the safetensors model
10
- with safe_open("adapter_model.safetensors", framework="pt") as f:
11
- model = f.load()
12
 
13
  # Function to generate response using the model
14
  def generate_response(input_text):
@@ -17,7 +15,7 @@ def generate_response(input_text):
17
 
18
  # Generate output using the model
19
  with torch.no_grad(): # Disable gradients for inference
20
- outputs = model.generate(inputs['input_ids'])
21
 
22
  # Decode the output and return it
23
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
3
  import torch
4
 
5
+ # Load the tokenizer from the Hugging Face Hub
6
  tokenizer = AutoTokenizer.from_pretrained("adarsh3601/my_gemma3_pt")
7
 
8
+ # Load the model from Hugging Face Hub (Assuming you are using a transformer model here)
9
+ model = AutoModelForCausalLM.from_pretrained("adarsh3601/my_gemma3_pt")
 
10
 
11
  # Function to generate response using the model
12
  def generate_response(input_text):
 
15
 
16
  # Generate output using the model
17
  with torch.no_grad(): # Disable gradients for inference
18
+ outputs = model.generate(inputs['input_ids'], max_length=50) # You can adjust max_length and other parameters
19
 
20
  # Decode the output and return it
21
  return tokenizer.decode(outputs[0], skip_special_tokens=True)